One-shot holography
- URL: http://arxiv.org/abs/2307.13032v2
- Date: Thu, 11 Apr 2024 18:15:11 GMT
- Title: One-shot holography
- Authors: Chris Akers, Adam Levine, Geoff Penington, Elizabeth Wildenhain,
- Abstract summary: We prove that the min- and max-entanglement wedges obey various properties necessary for this conjecture.
We extend both the frameworks of one-shot quantum Shannon theory and state-specific reconstruction to finite-dimensional von Neumann algebras.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Following the work of [2008.03319], we define a generally covariant max-entanglement wedge of a boundary region $B$, which we conjecture to be the bulk region reconstructible from $B$. We similarly define a covariant min-entanglement wedge, which we conjecture to be the bulk region that can influence the state on $B$. We prove that the min- and max-entanglement wedges obey various properties necessary for this conjecture, such as nesting, inclusion of the causal wedge, and a reduction to the usual quantum extremal surface prescription in the appropriate special cases. These proofs rely on one-shot versions of the (restricted) quantum focusing conjecture (QFC) that we conjecture to hold. We argue that these QFCs imply a one-shot generalized second law (GSL) and quantum Bousso bound. Moreover, in a particular semiclassical limit we prove this one-shot GSL directly using algebraic techniques. Finally, in order to derive our results, we extend both the frameworks of one-shot quantum Shannon theory and state-specific reconstruction to finite-dimensional von Neumann algebras, allowing nontrivial centers.
Related papers
- A unified approach to quantum de Finetti theorems and SoS rounding via geometric quantization [0.0]
We study a connection between a Hermitian version of the SoS hierarchy, related to the quantum de Finetti theorem.
We show that previously known HSoS rounding algorithms can be recast as quantizing an objective function.
arXiv Detail & Related papers (2024-11-06T17:09:28Z) - Quasi-quantum states and the quasi-quantum PCP theorem [0.21485350418225244]
We show that solving the $k$-local Hamiltonian over the quasi-quantum states is equivalent to optimizing a distribution of assignment over a classical $k$-local CSP.
Our main result is a PCP theorem for the $k$-local Hamiltonian over the quasi-quantum states in the form of a hardness-of-approximation result.
arXiv Detail & Related papers (2024-10-17T13:43:18Z) - SQ Lower Bounds for Non-Gaussian Component Analysis with Weaker
Assumptions [50.20087216230159]
We study the complexity of Non-Gaussian Component Analysis (NGCA) in the Statistical Query model.
We prove near-optimal SQ lower bounds for NGCA under the moment-matching condition only.
arXiv Detail & Related papers (2024-03-07T18:49:32Z) - Asymptotically isometric codes for holography [3.6320742399728645]
The holographic principle suggests that the low energy effective field theory of gravity has far too many states.
It is then natural that any quantum error correcting code with such a quantum field theory as the code subspace is not isometric.
We show that an isometric code can be recovered in the $N rightarrow infty$ limit when acting on fixed states in the code Hilbert space.
arXiv Detail & Related papers (2022-11-22T17:46:58Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Quantum minimal surfaces from quantum error correction [0.0]
We show that complementary state-specific reconstruction of logical (bulk) operators is equivalent to the existence of a quantum minimal surface prescription for physical (boundary) entropies.
We also formalize a definition of bulk reconstruction that we call "state-specific product unitary" reconstruction.
arXiv Detail & Related papers (2021-09-29T18:00:00Z) - Geometry of Banach spaces: a new route towards Position Based
Cryptography [65.51757376525798]
We study Position Based Quantum Cryptography (PBQC) from the perspective of geometric functional analysis and its connections with quantum games.
The main question we are interested in asks for the optimal amount of entanglement that a coalition of attackers have to share in order to compromise the security of any PBQC protocol.
We show that the understanding of the type properties of some more involved Banach spaces would allow to drop out the assumptions and lead to unconditional lower bounds on the resources used to attack our protocol.
arXiv Detail & Related papers (2021-03-30T13:55:11Z) - Exact-WKB, complete resurgent structure, and mixed anomaly in quantum
mechanics on $S^1$ [0.0]
We investigate the exact-WKB analysis for quantum mechanics in a periodic potential.
We describe the Stokes graphs of a general potential problem as a network of Airy-type or degenerate Weber-type building blocks.
arXiv Detail & Related papers (2021-03-11T10:32:12Z) - Quantum Geometric Confinement and Dynamical Transmission in Grushin
Cylinder [68.8204255655161]
We classify the self-adjoint realisations of the Laplace-Beltrami operator minimally defined on an infinite cylinder.
We retrieve those distinguished extensions previously identified in the recent literature, namely the most confining and the most transmitting.
arXiv Detail & Related papers (2020-03-16T11:37:23Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.