Keyword-Aware Relative Spatio-Temporal Graph Networks for Video Question
Answering
- URL: http://arxiv.org/abs/2307.13250v1
- Date: Tue, 25 Jul 2023 04:41:32 GMT
- Title: Keyword-Aware Relative Spatio-Temporal Graph Networks for Video Question
Answering
- Authors: Yi Cheng, Hehe Fan, Dongyun Lin, Ying Sun, Mohan Kankanhalli, and
Joo-Hwee Lim
- Abstract summary: graph-based methods for VideoQA usually ignore keywords in questions and employ a simple graph to aggregate features.
We propose a Keyword-aware Relative Spatio-Temporal (KRST) graph network for VideoQA.
- Score: 16.502197578954917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main challenge in video question answering (VideoQA) is to capture and
understand the complex spatial and temporal relations between objects based on
given questions. Existing graph-based methods for VideoQA usually ignore
keywords in questions and employ a simple graph to aggregate features without
considering relative relations between objects, which may lead to inferior
performance. In this paper, we propose a Keyword-aware Relative Spatio-Temporal
(KRST) graph network for VideoQA. First, to make question features aware of
keywords, we employ an attention mechanism to assign high weights to keywords
during question encoding. The keyword-aware question features are then used to
guide video graph construction. Second, because relations are relative, we
integrate the relative relation modeling to better capture the spatio-temporal
dynamics among object nodes. Moreover, we disentangle the spatio-temporal
reasoning into an object-level spatial graph and a frame-level temporal graph,
which reduces the impact of spatial and temporal relation reasoning on each
other. Extensive experiments on the TGIF-QA, MSVD-QA and MSRVTT-QA datasets
demonstrate the superiority of our KRST over multiple state-of-the-art methods.
Related papers
- Multi-object event graph representation learning for Video Question Answering [4.236280446793381]
We propose a contrastive language event graph representation learning method called CLanG to address this limitation.
Our method outperforms a strong baseline, achieving up to 2.2% higher accuracy on two challenging VideoQA, NExT-QA and TGIF-QA-R datasets.
arXiv Detail & Related papers (2024-09-12T04:42:51Z) - Learning Situation Hyper-Graphs for Video Question Answering [95.18071873415556]
We propose an architecture for Video Question Answering (VQA) that enables answering questions related to video content by predicting situation hyper-graphs.
We train a situation hyper-graph decoder to implicitly identify graph representations with actions and object/human-object relationships from the input video clip.
Our results show that learning the underlying situation hyper-graphs helps the system to significantly improve its performance for novel challenges of video question-answering tasks.
arXiv Detail & Related papers (2023-04-18T01:23:11Z) - Spatio-Temporal Interaction Graph Parsing Networks for Human-Object
Interaction Recognition [55.7731053128204]
In given video-based Human-Object Interaction scene, modeling thetemporal relationship between humans and objects are the important cue to understand the contextual information presented in the video.
With the effective-temporal relationship modeling, it is possible not only to uncover contextual information in each frame but also directly capture inter-time dependencies.
The full use of appearance features, spatial location and the semantic information are also the key to improve the video-based Human-Object Interaction recognition performance.
arXiv Detail & Related papers (2021-08-19T11:57:27Z) - Hierarchical Object-oriented Spatio-Temporal Reasoning for Video
Question Answering [27.979053252431306]
Video Question Answering (Video QA) is a powerful testbed to develop new AI capabilities.
We propose an object-oriented reasoning approach in that video is abstracted as a dynamic stream of interacting objects.
This mechanism is materialized into a family of general-purpose neural units and their multi-level architecture.
arXiv Detail & Related papers (2021-06-25T05:12:42Z) - NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions [80.60423934589515]
We introduce NExT-QA, a rigorously designed video question answering (VideoQA) benchmark.
We set up multi-choice and open-ended QA tasks targeting causal action reasoning, temporal action reasoning, and common scene comprehension.
We find that top-performing methods excel at shallow scene descriptions but are weak in causal and temporal action reasoning.
arXiv Detail & Related papers (2021-05-18T04:56:46Z) - Relation-aware Hierarchical Attention Framework for Video Question
Answering [6.312182279855817]
We propose a novel Relation-aware Hierarchical Attention (RHA) framework to learn both the static and dynamic relations of the objects in videos.
In particular, videos and questions are embedded by pre-trained models firstly to obtain the visual and textual features.
We consider the temporal, spatial, and semantic relations, and fuse the multimodal features by hierarchical attention mechanism to predict the answer.
arXiv Detail & Related papers (2021-05-13T09:35:42Z) - A Hierarchical Reasoning Graph Neural Network for The Automatic Scoring
of Answer Transcriptions in Video Job Interviews [14.091472037847499]
We propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs.
We employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session.
Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction.
arXiv Detail & Related papers (2020-12-22T12:27:45Z) - Hierarchical Conditional Relation Networks for Multimodal Video Question
Answering [67.85579756590478]
Video QA adds at least two more layers of complexity - selecting relevant content for each channel in the context of a linguistic query.
Conditional Relation Network (CRN) takes as input a set of tensorial objects translating into a new set of objects that encode relations of the inputs.
CRN is then applied for Video QA in two forms, short-form where answers are reasoned solely from the visual content, and long-form where associated information, such as subtitles, is presented.
arXiv Detail & Related papers (2020-10-18T02:31:06Z) - Location-aware Graph Convolutional Networks for Video Question Answering [85.44666165818484]
We propose to represent the contents in the video as a location-aware graph.
Based on the constructed graph, we propose to use graph convolution to infer both the category and temporal locations of an action.
Our method significantly outperforms state-of-the-art methods on TGIF-QA, Youtube2Text-QA, and MSVD-QA datasets.
arXiv Detail & Related papers (2020-08-07T02:12:56Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
We propose a novel Cross- and Self-Modal Graph Attention Network (CSMGAN) that recasts this task as a process of iterative messages passing over a joint graph.
Our CSMGAN is able to effectively capture high-order interactions between two modalities, thus enabling a further precise localization.
arXiv Detail & Related papers (2020-08-04T08:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.