LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition
- URL: http://arxiv.org/abs/2307.13269v3
- Date: Mon, 19 Aug 2024 03:31:19 GMT
- Title: LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition
- Authors: Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, Min Lin,
- Abstract summary: Low-rank adaptations (LoRA) are often employed to fine-tune large language models (LLMs) for new tasks.
This paper introduces LoraHub, a framework devised for the purposive assembly of LoRA modules trained on diverse given tasks.
With just a few examples from a new task, LoraHub can fluidly combine multiple LoRA modules, eliminating the need for human expertise and assumptions.
- Score: 44.13900539802629
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Low-rank adaptations (LoRA) are often employed to fine-tune large language models (LLMs) for new tasks. This paper investigates LoRA composability for cross-task generalization and introduces LoraHub, a simple framework devised for the purposive assembly of LoRA modules trained on diverse given tasks, with the objective of achieving adaptable performance on unseen tasks. With just a few examples from a new task, LoraHub can fluidly combine multiple LoRA modules, eliminating the need for human expertise and assumptions. Notably, the composition requires neither additional model parameters nor gradients. Empirical results on the Big-Bench Hard benchmark suggest that LoraHub, while not surpassing the performance of in-context learning, offers a notable performance-efficiency trade-off in few-shot scenarios by employing a significantly reduced number of tokens per example during inference. Notably, LoraHub establishes a better upper bound compared to in-context learning when paired with different demonstration examples, demonstrating its potential for future development. Our vision is to establish a platform for LoRA modules, empowering users to share their trained LoRA modules. This collaborative approach facilitates the seamless application of LoRA modules to novel tasks, contributing to an adaptive ecosystem. Our code is available at https://github.com/sail-sg/lorahub, and all the pre-trained LoRA modules are released at https://huggingface.co/lorahub.
Related papers
- Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning [53.98941571078398]
Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity.
Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules.
While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks.
We propose Single-ranked Mixture of Experts LoRA (textbfSMoRA), which embeds MoE into LoRA by textittreating each rank as an
arXiv Detail & Related papers (2025-01-25T06:56:39Z) - Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning [57.36978335727009]
Low-Rank Adaptation (LoRA) offers an efficient way to fine-tune large language models (LLMs)
In this paper, we propose a framework that adaptively retrieves and composes multiple LoRAs based on input prompts.
arXiv Detail & Related papers (2024-06-24T05:24:41Z) - LoRA-Flow: Dynamic LoRA Fusion for Large Language Models in Generative
Tasks [72.88244322513039]
LoRA employs lightweight modules to customize large language models (LLMs) for each downstream task or domain.
We propose LoRA-Flow, which utilizes dynamic weights to adjust the impact of different LoRAs.
Experiments across six generative tasks demonstrate that our method consistently outperforms baselines with task-level fusion weights.
arXiv Detail & Related papers (2024-02-18T04:41:25Z) - LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed
Tasks in the Wild [76.67343971195267]
Low-Rank Adaptation (LoRA) provides an efficient solution for fine-tuning large language models (LLM)
LoraRetriever is a retrieve-then-compose framework that adaptively retrieves and composes multiple LoRAs according to the input prompts.
Experimental results indicate that LoraRetriever consistently outperforms the baselines.
arXiv Detail & Related papers (2024-02-15T15:02:46Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
We introduce Chain of LoRA, an iterative optimization framework inspired by the Frank-Wolfe algorithm.
We demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.
arXiv Detail & Related papers (2024-01-08T14:26:49Z) - mLoRA: Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline Parallelism in Multiple GPUs [5.735411578779657]
Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is commonly used to adapt a base LLM to multiple downstream tasks.
LoRA platforms enable developers to fine-tune multiple models and develop various domain-specific applications simultaneously.
Existing model parallelism schemes suffer from high communication overhead and inefficient GPU utilization when training multiple LoRA tasks.
arXiv Detail & Related papers (2023-12-05T05:38:38Z) - MultiLoRA: Democratizing LoRA for Better Multi-Task Learning [20.750808913757396]
LoRA achieves remarkable resource efficiency and comparable performance when adapting LLMs for specific tasks.
LoRA is dominated by a small number of top singular vectors while fine-tuning decomposes into a set of less important unitary transforms.
We propose MultiLoRA for better multi-task adaptation by reducing the dominance of top singular vectors observed in LoRA.
arXiv Detail & Related papers (2023-11-20T02:59:18Z) - S-LoRA: Serving Thousands of Concurrent LoRA Adapters [59.490751234925206]
Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is often employed to adapt a base model to a multitude of tasks.
We present S-LoRA, a system designed for the scalable serving of many LoRA adapters.
arXiv Detail & Related papers (2023-11-06T17:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.