Overcoming Distribution Mismatch in Quantizing Image Super-Resolution Networks
- URL: http://arxiv.org/abs/2307.13337v2
- Date: Thu, 18 Jul 2024 08:37:08 GMT
- Title: Overcoming Distribution Mismatch in Quantizing Image Super-Resolution Networks
- Authors: Cheeun Hong, Kyoung Mu Lee,
- Abstract summary: quantization leads to accuracy loss in image super-resolution (SR) networks.
Existing works address this distribution mismatch problem by dynamically adapting quantization ranges during test time.
We propose a new quantization-aware training scheme that effectively Overcomes the Distribution Mismatch problem in SR networks.
- Score: 53.23803932357899
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Although quantization has emerged as a promising approach to reducing computational complexity across various high-level vision tasks, it inevitably leads to accuracy loss in image super-resolution (SR) networks. This is due to the significantly divergent feature distributions across different channels and input images of the SR networks, which complicates the selection of a fixed quantization range. Existing works address this distribution mismatch problem by dynamically adapting quantization ranges to the varying distributions during test time. However, such a dynamic adaptation incurs additional computational costs during inference. In contrast, we propose a new quantization-aware training scheme that effectively Overcomes the Distribution Mismatch problem in SR networks without the need for dynamic adaptation. Intuitively, this mismatch can be mitigated by regularizing the distance between the feature and a fixed quantization range. However, we observe that such regularization can conflict with the reconstruction loss during training, negatively impacting SR accuracy. Therefore, we opt to regularize the mismatch only when the gradients of the regularization are aligned with those of the reconstruction loss. Additionally, we introduce a layer-wise weight clipping correction scheme to determine a more suitable quantization range for layer-wise weights. Experimental results demonstrate that our framework effectively reduces the distribution mismatch and achieves state-of-the-art performance with minimal computational overhead.
Related papers
- CADyQ: Content-Aware Dynamic Quantization for Image Super-Resolution [55.50793823060282]
We propose a novel Content-Aware Dynamic Quantization (CADyQ) method for image super-resolution (SR) networks.
CADyQ allocates optimal bits to local regions and layers adaptively based on the local contents of an input image.
The pipeline has been tested on various SR networks and evaluated on several standard benchmarks.
arXiv Detail & Related papers (2022-07-21T07:50:50Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
We modify a post-training neural-network quantization method, GPFQ, that is based on a greedy path-following mechanism.
We prove that for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights.
arXiv Detail & Related papers (2022-01-26T18:47:38Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
Quantizing deep convolutional neural networks for image super-resolution substantially reduces their computational costs.
Existing works either suffer from a severe performance drop in ultra-low precision of 4 or lower bit-widths, or require a heavy fine-tuning process to recover the performance.
We propose a novel distribution-aware quantization scheme (DAQ) which facilitates accurate training-free quantization in ultra-low precision.
arXiv Detail & Related papers (2020-12-21T10:19:42Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z) - AUSN: Approximately Uniform Quantization by Adaptively Superimposing
Non-uniform Distribution for Deep Neural Networks [0.7378164273177589]
Existing uniform and non-uniform quantization methods exhibit an inherent conflict between the representing range and representing resolution.
We propose a novel quantization method to quantize the weight and activation.
The key idea is to Approximate the Uniform quantization by Adaptively Superposing multiple Non-uniform quantized values, namely AUSN.
arXiv Detail & Related papers (2020-07-08T05:10:53Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.