Achieving Linear Speedup in Decentralized Stochastic Compositional
Minimax Optimization
- URL: http://arxiv.org/abs/2307.13430v2
- Date: Tue, 1 Aug 2023 08:17:16 GMT
- Title: Achieving Linear Speedup in Decentralized Stochastic Compositional
Minimax Optimization
- Authors: Hongchang Gao
- Abstract summary: The compositional minimax problem has attracted a surge of attention in recent years since it covers many emerging machine learning models.
Our study shows that the standard gossip communication strategy cannot achieve linear speedup for decentralized compositional minimax problems.
We developed a novel decentralized compositional descent ascent with momentum gradient algorithm to reduce the consensus error in the inner-level function.
- Score: 22.988563731766586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The stochastic compositional minimax problem has attracted a surge of
attention in recent years since it covers many emerging machine learning
models. Meanwhile, due to the emergence of distributed data, optimizing this
kind of problem under the decentralized setting becomes badly needed. However,
the compositional structure in the loss function brings unique challenges to
designing efficient decentralized optimization algorithms. In particular, our
study shows that the standard gossip communication strategy cannot achieve
linear speedup for decentralized compositional minimax problems due to the
large consensus error about the inner-level function. To address this issue, we
developed a novel decentralized stochastic compositional gradient descent
ascent with momentum algorithm to reduce the consensus error in the inner-level
function. As such, our theoretical results demonstrate that it is able to
achieve linear speedup with respect to the number of workers. We believe this
novel algorithmic design could benefit the development of decentralized
compositional optimization. Finally, we applied our methods to the imbalanced
classification problem. The extensive experimental results provide evidence for
the effectiveness of our algorithm.
Related papers
- Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks [57.24087627267086]
We consider the task of minimizing the sum of convex functions stored in a decentralized manner across the nodes of a communication network.
Lower bounds on the number of decentralized communications and (sub)gradient computations required to solve the problem have been established.
We develop the first optimal algorithm that matches these lower bounds and offers substantially improved theoretical performance compared to the existing state of the art.
arXiv Detail & Related papers (2024-05-28T10:28:45Z) - Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
We investigate the complexity of the generalization bound of the decentralized gradient descent (D-SGDA) algorithm.
Our results analyze the impact of different top factors on the generalization of D-SGDA.
We also balance it with the generalization to obtain the optimal convex-concave setting.
arXiv Detail & Related papers (2023-10-31T11:27:01Z) - Decentralized Multi-Level Compositional Optimization Algorithms with Level-Independent Convergence Rate [26.676582181833584]
Decentralized multi-level optimization is challenging because of the multilevel structure and decentralized communication.
We develop two novel decentralized optimization algorithms to optimize the multi-level compositional problem.
arXiv Detail & Related papers (2023-06-06T00:23:28Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range machine learning.
This paper develops two novel decentralized minimax optimization algorithms for the non-strongly-nonconcave problem.
arXiv Detail & Related papers (2023-04-24T02:19:39Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
This paper is the first to study PFL for saddle point problems encompassing a broader range of optimization problems.
We propose new algorithms to address this problem and provide a theoretical analysis of the smooth (strongly) convex-(strongly) concave saddle point problems.
Numerical experiments for bilinear problems and neural networks with adversarial noise demonstrate the effectiveness of the proposed methods.
arXiv Detail & Related papers (2021-06-14T10:36:25Z) - A Decentralized Adaptive Momentum Method for Solving a Class of Min-Max
Optimization Problems [9.653157073271021]
We develop a decentralized adaptive momentum (ADAM)-type algorithm for solving min-max optimization problem.
We obtain non-asymptotic rates of convergence of the proposed algorithm for finding a (stochastic) first-order Nash equilibrium point.
arXiv Detail & Related papers (2021-06-10T22:32:01Z) - Decentralized Statistical Inference with Unrolled Graph Neural Networks [26.025935320024665]
We propose a learning-based framework, which unrolls decentralized optimization algorithms into graph neural networks (GNNs)
By minimizing the recovery error via end-to-end training, this learning-based framework resolves the model mismatch issue.
Our convergence analysis reveals that the learned model parameters may accelerate the convergence and reduce the recovery error to a large extent.
arXiv Detail & Related papers (2021-04-04T07:52:34Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.