The timing bottleneck: Why timing and overlap are mission-critical for
conversational user interfaces, speech recognition and dialogue systems
- URL: http://arxiv.org/abs/2307.15493v1
- Date: Fri, 28 Jul 2023 11:38:05 GMT
- Title: The timing bottleneck: Why timing and overlap are mission-critical for
conversational user interfaces, speech recognition and dialogue systems
- Authors: Andreas Liesenfeld, Alianda Lopez, Mark Dingemanse
- Abstract summary: We evaluate 5 major commercial ASR systems for their conversational and multilingual support.
We find that word error rates for natural conversational data in 6 languages remain abysmal, and that overlap remains a key challenge.
Our findings help to evaluate the current state of conversational ASR, contribute towards multidimensional error analysis and evaluation, and identify phenomena that need most attention on the way to build robust interactive speech technologies.
- Score: 0.11470070927586018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech recognition systems are a key intermediary in voice-driven
human-computer interaction. Although speech recognition works well for pristine
monologic audio, real-life use cases in open-ended interactive settings still
present many challenges. We argue that timing is mission-critical for dialogue
systems, and evaluate 5 major commercial ASR systems for their conversational
and multilingual support. We find that word error rates for natural
conversational data in 6 languages remain abysmal, and that overlap remains a
key challenge (study 1). This impacts especially the recognition of
conversational words (study 2), and in turn has dire consequences for
downstream intent recognition (study 3). Our findings help to evaluate the
current state of conversational ASR, contribute towards multidimensional error
analysis and evaluation, and identify phenomena that need most attention on the
way to build robust interactive speech technologies.
Related papers
- REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
We introduce REALTALK, a 21-day corpus of authentic messaging app dialogues.
We compare EI attributes and persona consistency to understand the challenges posed by real-world dialogues.
Our findings reveal that models struggle to simulate a user solely from dialogue history, while fine-tuning on specific user chats improves persona emulation.
arXiv Detail & Related papers (2025-02-18T20:29:01Z) - Gesture-Aware Zero-Shot Speech Recognition for Patients with Language Disorders [10.664605070306417]
We propose a gesture-aware Automatic Speech Recognition (ASR) system with zero-shot learning for individuals with speech impairments.
Experiment results and analyses show that including gesture information significantly enhances semantic understanding.
arXiv Detail & Related papers (2025-02-18T14:15:55Z) - Incremental Dialogue Management: Survey, Discussion, and Implications for HRI [16.34485107181007]
We review the literature on interactive systems that operate incrementally (i.e., at the word level or below it).
We motivate the need for incremental systems, survey incremental modeling of important aspects of dialogue like speech recognition and language generation.
We find that there is very little research on incremental dialogue management, offer some requirements for practical incremental dialogue management, and the implications of incremental dialogue for embodied, robotic platforms.
arXiv Detail & Related papers (2025-01-01T20:58:03Z) - WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain.
These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech.
Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems.
arXiv Detail & Related papers (2024-11-15T04:16:45Z) - Adapting Text-based Dialogue State Tracker for Spoken Dialogues [20.139351605832665]
We describe our engineering effort in building a highly successful model that participated in the speech-aware dialogue systems technology challenge track in DSTC11.
Our model consists of three major modules: (1) automatic speech recognition error correction to bridge the gap between the spoken and the text utterances, (2) text-based dialogue system (D3ST) for estimating the slots and values using slot descriptions, and (3) post-processing for recovering the error of the estimated slot value.
arXiv Detail & Related papers (2023-08-29T06:27:58Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
In spoken question answering, the systems are designed to answer questions from contiguous text spans within the related speech transcripts.
We propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling the systems to model complex dialogue flows.
Our main objective is to build the system to deal with conversational questions based on the audio recordings, and to explore the plausibility of providing more cues from different modalities with systems in information gathering.
arXiv Detail & Related papers (2022-04-29T17:56:59Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
This work presents a new benchmark on spoken task-oriented conversations.
We study multi-domain dialogue state tracking and knowledge-grounded dialogue modeling.
Our data set enables speech-based benchmarking of task-oriented dialogue systems.
arXiv Detail & Related papers (2021-09-28T04:51:04Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
This paper presents a novel solution for multi-turn dialogue modeling, which segments and extracts topic-aware utterances in an unsupervised way.
Our topic-aware modeling is implemented by a newly proposed unsupervised topic-aware segmentation algorithm and Topic-Aware Dual-attention Matching (TADAM) Network.
arXiv Detail & Related papers (2020-09-26T08:43:06Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.