Dynamic algorithms for k-center on graphs
- URL: http://arxiv.org/abs/2307.15557v2
- Date: Mon, 8 Jan 2024 22:56:20 GMT
- Title: Dynamic algorithms for k-center on graphs
- Authors: Emilio Cruciani, Sebastian Forster, Gramoz Goranci, Yasamin Nazari,
Antonis Skarlatos
- Abstract summary: We give the first efficient algorithms for the $k$-center problem on dynamic graphs undergoing edge updates.
We show a reduction that leads to a fully dynamic $(2+epsilon)$-approximation algorithm for the $k$-center problem.
- Score: 3.568439282784197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we give the first efficient algorithms for the $k$-center
problem on dynamic graphs undergoing edge updates. In this problem, the goal is
to partition the input into $k$ sets by choosing $k$ centers such that the
maximum distance from any data point to its closest center is minimized. It is
known that it is NP-hard to get a better than $2$ approximation for this
problem.
While in many applications the input may naturally be modeled as a graph, all
prior works on $k$-center problem in dynamic settings are on point sets in
arbitrary metric spaces. In this paper, we give a deterministic decremental
$(2+\epsilon)$-approximation algorithm and a randomized incremental
$(4+\epsilon)$-approximation algorithm, both with amortized update time
$kn^{o(1)}$ for weighted graphs. Moreover, we show a reduction that leads to a
fully dynamic $(2+\epsilon)$-approximation algorithm for the $k$-center
problem, with worst-case update time that is within a factor $k$ of the
state-of-the-art fully dynamic $(1+\epsilon)$-approximation single-source
shortest paths algorithm in graphs. Matching this bound is a natural goalpost
because the approximate distances of each vertex to its center can be used to
maintain a $(2+\epsilon)$-approximation of the graph diameter and the fastest
known algorithms for such a diameter approximation also rely on maintaining
approximate single-source distances.
Related papers
- Mini-Batch Kernel $k$-means [4.604003661048267]
A single iteration of our algorithm takes $widetildeO(kb2)$ time, significantly faster than the $O(n2)$ time required by the full batch kernel $k$-means.
Experiments demonstrate that our algorithm consistently achieves a 10-100x speedup with minimal loss in quality.
arXiv Detail & Related papers (2024-10-08T10:59:14Z) - Nearly Linear Sparsification of $\ell_p$ Subspace Approximation [47.790126028106734]
A popular approach to cope with the NP-hardness of the $ell_p$ subspace approximation problem is to compute a strong coreset.
We obtain the first algorithm for constructing a strong coreset for $ell_p$ subspace approximation with a nearly optimal dependence on the rank parameter $k$.
Our techniques also lead to the first nearly optimal online strong coresets for $ell_p$ subspace approximation with similar bounds as the offline setting.
arXiv Detail & Related papers (2024-07-03T16:49:28Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Correlation Clustering Algorithm for Dynamic Complete Signed Graphs: An
Index-based Approach [9.13755431537592]
In this paper, we reduce the complexity of approximating the correlation clustering problem from $O(mtimesleft( 2+ alpha (G) right)+n)$ to $O(m+n)$ for any given value of $varepsilon$ for a complete signed graph.
Our approach gives the same output as the original algorithm and makes it possible to implement the algorithm in a full dynamic setting.
arXiv Detail & Related papers (2023-01-01T10:57:36Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Sublinear Time and Space Algorithms for Correlation Clustering via
Sparse-Dense Decompositions [9.29659220237395]
We present a new approach for solving (minimum disagreement) correlation clustering.
We obtain sublinear algorithms with highly efficient time and space complexity.
The main ingredient of our approach is a novel connection to sparse-dense graph decompositions.
arXiv Detail & Related papers (2021-09-29T16:25:02Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - On Efficient Low Distortion Ultrametric Embedding [18.227854382422112]
A widely-used method to preserve the underlying hierarchical structure of the data is to find an embedding of the data into a tree or an ultrametric.
In this paper, we provide a new algorithm which takes as input a set of points isometric in $mathbbRd2 (for universal constant $rho>1$) to output an ultrametric $Delta.
We show that the output of our algorithm is comparable to the output of the linkage algorithms while achieving a much faster running time.
arXiv Detail & Related papers (2020-08-15T11:06:45Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Coreset-based Strategies for Robust Center-type Problems [0.6875312133832077]
We devise coreset-based strategies for the two problems which yield efficient sequential, MapReduce, and Streaming algorithms.
For wide ranges of the parameters $k,zepsilon, D$, we obtain a sequential algorithm with running time linear in $|V|$, and MapReduce/Streaming algorithms with few rounds/passes and substantially sublinear local/working memory.
arXiv Detail & Related papers (2020-02-18T10:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.