Primitive Skill-based Robot Learning from Human Evaluative Feedback
- URL: http://arxiv.org/abs/2307.15801v2
- Date: Wed, 2 Aug 2023 06:22:24 GMT
- Title: Primitive Skill-based Robot Learning from Human Evaluative Feedback
- Authors: Ayano Hiranaka, Minjune Hwang, Sharon Lee, Chen Wang, Li Fei-Fei,
Jiajun Wu, Ruohan Zhang
- Abstract summary: Reinforcement learning algorithms face challenges when dealing with long-horizon robot manipulation tasks in real-world environments.
We propose a novel framework, SEED, which leverages two approaches: reinforcement learning from human feedback (RLHF) and primitive skill-based reinforcement learning.
Our results show that SEED significantly outperforms state-of-the-art RL algorithms in sample efficiency and safety.
- Score: 28.046559859978597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) algorithms face significant challenges when
dealing with long-horizon robot manipulation tasks in real-world environments
due to sample inefficiency and safety issues. To overcome these challenges, we
propose a novel framework, SEED, which leverages two approaches: reinforcement
learning from human feedback (RLHF) and primitive skill-based reinforcement
learning. Both approaches are particularly effective in addressing sparse
reward issues and the complexities involved in long-horizon tasks. By combining
them, SEED reduces the human effort required in RLHF and increases safety in
training robot manipulation with RL in real-world settings. Additionally,
parameterized skills provide a clear view of the agent's high-level intentions,
allowing humans to evaluate skill choices before they are executed. This
feature makes the training process even safer and more efficient. To evaluate
the performance of SEED, we conducted extensive experiments on five
manipulation tasks with varying levels of complexity. Our results show that
SEED significantly outperforms state-of-the-art RL algorithms in sample
efficiency and safety. In addition, SEED also exhibits a substantial reduction
of human effort compared to other RLHF methods. Further details and video
results can be found at https://seediros23.github.io/.
Related papers
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks.
Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies.
We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution.
arXiv Detail & Related papers (2024-10-29T08:12:20Z) - SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
We propose spire, a system that decomposes tasks into smaller learning subproblems and second combines imitation and reinforcement learning to maximize their strengths.
We find that spire outperforms prior approaches that integrate imitation learning, reinforcement learning, and planning by 35% to 50% in average task performance.
arXiv Detail & Related papers (2024-10-23T17:42:07Z) - MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning [17.437573206368494]
Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks.
Current algorithms suffer from low sample efficiency, limiting their practical applicability.
We present MENTOR, a method that improves both the architecture and optimization of RL agents.
arXiv Detail & Related papers (2024-10-19T04:31:54Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - HAIM-DRL: Enhanced Human-in-the-loop Reinforcement Learning for Safe and Efficient Autonomous Driving [2.807187711407621]
We propose an enhanced human-in-the-loop reinforcement learning method, termed the Human as AI mentor-based deep reinforcement learning (HAIM-DRL) framework.
We first introduce an innovative learning paradigm that effectively injects human intelligence into AI, termed Human as AI mentor (HAIM)
In this paradigm, the human expert serves as a mentor to the AI agent, while the agent could be guided to minimize traffic flow disturbance.
arXiv Detail & Related papers (2024-01-06T08:30:14Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
We introduce an efficient system for learning dexterous manipulation skills withReinforcement learning.
The main idea of our approach is the integration of recent advances in sample-efficient RL and replay buffer bootstrapping.
Our system completes the real-world training cycle by incorporating learned resets via an imitation-based pickup policy.
arXiv Detail & Related papers (2023-09-06T19:05:31Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.