Spatial inversion symmetry breaking of vortex current in biased-ladder
superfluid
- URL: http://arxiv.org/abs/2307.15889v1
- Date: Sat, 29 Jul 2023 05:20:59 GMT
- Title: Spatial inversion symmetry breaking of vortex current in biased-ladder
superfluid
- Authors: Weijie Huang and Yao Yao
- Abstract summary: We investigate the dynamics of interacting bosons on a two-leg ladder in presence of a uniform Abelian gauge field.
The model hosts a variety of emergent quantum phases, and we focus on the superfluid biased-ladder phase breaking the $Z_2$ symmetry of two legs.
- Score: 5.128355665808276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the quench dynamics of interacting bosons on a two-leg ladder
in presence of a uniform Abelian gauge field. The model hosts a variety of
emergent quantum phases, and we focus on the superfluid biased-ladder phase
breaking the $Z_{2}$ symmetry of two legs. We observe an asymmetric spreading
of vortex current and particle density, i.e., the current behaves particle-like
on the right and wave-like on the left, indicating spontaneous breaking of the
spatial inversion symmetry. By decreasing the repulsion strength, it is found
the particle-like current is more robust than the wave-like one. The evolution
of entanglement entropy manifests logarithmic growth with time suggesting
many-body localization matters.
Related papers
- Controlling Symmetries and Quantum Criticality in the Anisotropic Coupled-Top Model [32.553027955412986]
We investigate the anisotropic coupled-top model, which describes the interactions between two large spins along both $x-$ and $y-$directions.
We can manipulate the system's symmetry, inducing either discrete $Z$ or continuous U(1) symmetry.
The framework provides an ideal platform for experimentally controlling symmetries and investigating associated physical phenomena.
arXiv Detail & Related papers (2025-02-13T15:14:29Z) - Circuit QED with a Giant Atom Coupling to Left-handed Superlattice
Metamaterials [6.933389994611203]
We study the quantum dynamics of a giant atom interacting with left-handed superlattice metamaterials.
The presence of asymmetric band edges leads to diverse interference dynamics.
arXiv Detail & Related papers (2023-09-13T09:16:40Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Spin-tensor Meissner currents of ultracold bosonic gas in an optical
lattice [0.0]
We investigate the Meissner currents of interacting bosons subjected to a staggered artificial gauge field in a three-leg ribbon geometry.
The currents are uniform along each leg in the Meissner phase and form vortex-antivortex pairs in the vortex phase.
Our work provides useful guidance to ongoing experimental research on synthetic flux ribbons.
arXiv Detail & Related papers (2023-01-12T14:42:28Z) - Continuous Symmetry Breaking in a Two-dimensional Rydberg Array [1.0885320386898631]
Spontaneous symmetry breaking underlies much of our classification of phases of matter and their associated transitions.
In this work, we realize a two-dimensional dipolar XY model - which exhibits a continuous spin-rotational symmetry.
We demonstrate the adiabatic preparation of correlated low-temperature states of both the XY ferromagnet and the XY antiferromagnet.
arXiv Detail & Related papers (2022-07-26T14:35:07Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Breaking strong symmetries in dissipative quantum systems: Bosonic atoms
coupled to a cavity [0.0]
In dissipative quantum systems, strong symmetries can lead to the existence of conservation laws and multiple steady states.
We show that for ideal bosons coupled to the cavity multiple steady states exist and in each symmetry sector a dissipative phase transition occurs at a different critical point.
We point out the phenomenon of dissipative freezing, the breaking of the conservation law at the level of individual realizations in the presence of the strong symmetry.
arXiv Detail & Related papers (2021-02-04T10:54:31Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Parallel dark soliton pair in a bistable 2D exciton-polariton superfluid [47.187609203210705]
2D dark solitons are unstable and collapse into vortices due to snake instabilities.
We demonstrate that a pair of dark solitons can be formed in the wake of an obstacle in a polariton flow resonantly supported by a homogeneous laser beam.
arXiv Detail & Related papers (2020-03-25T13:52:22Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - SUSY shields the scaling symmetry of conformal quantum mechanics [0.0]
In a strongly attractive potential, the scaling symmetry is broken to a discrete subgroup while, in a strongly repulsive potential, it is preserved at quantum level.
We show that potentials with couplings in the strongly-repulsive and in the weak-medium ranges can be related by a dynamical supersymmetry.
arXiv Detail & Related papers (2019-12-30T17:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.