InvVis: Large-Scale Data Embedding for Invertible Visualization
- URL: http://arxiv.org/abs/2307.16176v3
- Date: Sun, 3 Sep 2023 13:39:21 GMT
- Title: InvVis: Large-Scale Data Embedding for Invertible Visualization
- Authors: Huayuan Ye, Chenhui Li, Yang Li and Changbo Wang
- Abstract summary: InvVis is a new approach for invertible visualization, which is reconstructing or further modifying a visualization from an image.
We propose a new method to efficiently express chart data in the form of images, enabling large-capacity data embedding.
We conduct a series of evaluation experiments to assess our method from multiple perspectives.
- Score: 17.863390528801943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present InvVis, a new approach for invertible visualization, which is
reconstructing or further modifying a visualization from an image. InvVis
allows the embedding of a significant amount of data, such as chart data, chart
information, source code, etc., into visualization images. The encoded image is
perceptually indistinguishable from the original one. We propose a new method
to efficiently express chart data in the form of images, enabling
large-capacity data embedding. We also outline a model based on the invertible
neural network to achieve high-quality data concealing and revealing. We
explore and implement a variety of application scenarios of InvVis.
Additionally, we conduct a series of evaluation experiments to assess our
method from multiple perspectives, including data embedding quality, data
restoration accuracy, data encoding capacity, etc. The result of our
experiments demonstrates the great potential of InvVis in invertible
visualization.
Related papers
- Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data.
We define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources.
arXiv Detail & Related papers (2023-12-01T18:59:57Z) - Visual Data-Type Understanding does not emerge from Scaling
Vision-Language Models [31.69213233651326]
We introduce the novel task of Visual Data-Type Identification.
An extensive zero-shot evaluation of 39 vision-language models (VLMs) shows a nuanced performance landscape.
arXiv Detail & Related papers (2023-10-12T17:59:30Z) - EVA: Exploring the Limits of Masked Visual Representation Learning at
Scale [46.952339726872374]
We launch EVA, a vision-centric foundation model to explore the limits of visual representation at scale.
EVA is a vanilla ViT pre-trained to reconstruct the masked out image-text aligned vision features conditioned on visible image patches.
We find initializing the vision tower of a giant CLIP from EVA can greatly stabilize the training and outperform the training from scratch counterpart with much fewer samples and less compute.
arXiv Detail & Related papers (2022-11-14T18:59:52Z) - ViewFool: Evaluating the Robustness of Visual Recognition to Adversarial
Viewpoints [42.64942578228025]
We propose a novel method called ViewFool to find adversarial viewpoints that mislead visual recognition models.
By encoding real-world objects as neural radiance fields (NeRF), ViewFool characterizes a distribution of diverse adversarial viewpoints.
arXiv Detail & Related papers (2022-10-08T03:06:49Z) - Peripheral Vision Transformer [52.55309200601883]
We take a biologically inspired approach and explore to model peripheral vision in deep neural networks for visual recognition.
We propose to incorporate peripheral position encoding to the multi-head self-attention layers to let the network learn to partition the visual field into diverse peripheral regions given training data.
We evaluate the proposed network, dubbed PerViT, on the large-scale ImageNet dataset and systematically investigate the inner workings of the model for machine perception.
arXiv Detail & Related papers (2022-06-14T12:47:47Z) - Off-policy Imitation Learning from Visual Inputs [83.22342811160114]
We propose OPIfVI, which is composed of an off-policy learning manner, data augmentation, and encoder techniques.
We show that OPIfVI is able to achieve expert-level performance and outperform existing baselines.
arXiv Detail & Related papers (2021-11-08T09:06:12Z) - VizAI : Selecting Accurate Visualizations of Numerical Data [2.6039035727217907]
VizAI is a generative-discriminative framework that first generates various statistical properties of the data.
It is linked to a discriminative model that selects the visualization that best matches the true statistics of the data being visualized.
VizAI can easily be trained with minimal supervision and adapts to settings with varying degrees of supervision easily.
arXiv Detail & Related papers (2021-11-07T22:05:44Z) - Neuromorphologicaly-preserving Volumetric data encoding using VQ-VAE [4.221619479687068]
We show a VQ-VAE inspired network can efficiently encode a full-resolution 3D brain volume, compressing the data to $0.825%$ of the original size while maintaining image fidelity.
We then demonstrate that VQ-VAE decoded images preserve the morphological characteristics of the original data through voxel-based morphology and segmentation experiments.
arXiv Detail & Related papers (2020-02-13T18:18:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.