Model-based Causal Bayesian Optimization
- URL: http://arxiv.org/abs/2307.16625v1
- Date: Mon, 31 Jul 2023 13:02:36 GMT
- Title: Model-based Causal Bayesian Optimization
- Authors: Scott Sussex, Pier Giuseppe Sessa, Anastasiia Makarova and Andreas
Krause
- Abstract summary: We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
- Score: 74.78486244786083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Causal Bayesian Optimization (CBO), an agent intervenes on an unknown
structural causal model to maximize a downstream reward variable. In this
paper, we consider the generalization where other agents or external events
also intervene on the system, which is key for enabling adaptiveness to
non-stationarities such as weather changes, market forces, or adversaries. We
formalize this generalization of CBO as Adversarial Causal Bayesian
Optimization (ACBO) and introduce the first algorithm for ACBO with bounded
regret: Causal Bayesian Optimization with Multiplicative Weights (CBO-MW). Our
approach combines a classical online learning strategy with causal modeling of
the rewards. To achieve this, it computes optimistic counterfactual reward
estimates by propagating uncertainty through the causal graph. We derive regret
bounds for CBO-MW that naturally depend on graph-related quantities. We further
propose a scalable implementation for the case of combinatorial interventions
and submodular rewards. Empirically, CBO-MW outperforms non-causal and
non-adversarial Bayesian optimization methods on synthetic environments and
environments based on real-word data. Our experiments include a realistic
demonstration of how CBO-MW can be used to learn users' demand patterns in a
shared mobility system and reposition vehicles in strategic areas.
Related papers
- Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Improving Transferability of Adversarial Examples via Bayesian Attacks [84.90830931076901]
We introduce a novel extension by incorporating the Bayesian formulation into the model input as well, enabling the joint diversification of both the model input and model parameters.
Our method achieves a new state-of-the-art on transfer-based attacks, improving the average success rate on ImageNet and CIFAR-10 by 19.14% and 2.08%, respectively.
arXiv Detail & Related papers (2023-07-21T03:43:07Z) - Model-based Causal Bayesian Optimization [78.120734120667]
We propose model-based causal Bayesian optimization (MCBO)
MCBO learns a full system model instead of only modeling intervention-reward pairs.
Unlike in standard Bayesian optimization, our acquisition function cannot be evaluated in closed form.
arXiv Detail & Related papers (2022-11-18T14:28:21Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Neighbor Regularized Bayesian Optimization for Hyperparameter
Optimization [12.544312247050236]
We propose a novel BO algorithm called Neighbor Regularized Bayesian Optimization (NRBO) to solve the problem.
We first propose a neighbor-based regularization to smooth each sample observation, which could reduce the observation noise efficiently without any extra training cost.
We conduct experiments on the bayesmark benchmark and important computer vision benchmarks such as ImageNet and COCO.
arXiv Detail & Related papers (2022-10-07T12:08:01Z) - Sparse Bayesian Optimization [16.867375370457438]
We present several regularization-based approaches that allow us to discover sparse and more interpretable configurations.
We propose a novel differentiable relaxation based on homotopy continuation that makes it possible to target sparsity.
We show that we are able to efficiently optimize for sparsity.
arXiv Detail & Related papers (2022-03-03T18:25:33Z) - Likelihood Training of Schr\"odinger Bridge using Forward-Backward SDEs
Theory [29.82841891919951]
It remains unclear whether the optimization principle of SB relates to the modern training of deep generative models.
We present a novel computational framework for likelihood training of SB models grounded on Forward-Backward Theory.
We show that the resulting training achieves comparable results on generating realistic images on MNIST, CelebA, and CIFAR10.
arXiv Detail & Related papers (2021-10-21T17:18:59Z) - Causal Bayesian Optimization [8.958125394444679]
We study the problem of globally optimizing a variable of interest that is part of a causal model in which a sequence of interventions can be performed.
Our approach combines ideas from causal inference, uncertainty quantification and sequential decision making.
We show how knowing the causal graph significantly improves the ability to reason about optimal decision making strategies.
arXiv Detail & Related papers (2020-05-24T13:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.