Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis
- URL: http://arxiv.org/abs/2308.00404v2
- Date: Mon, 27 May 2024 15:42:54 GMT
- Title: Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis
- Authors: Vito Walter Anelli, Daniele Malitesta, Claudio Pomo, Alejandro BellogĂn, Tommaso Di Noia, Eugenio Di Sciascio,
- Abstract summary: We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
- Score: 50.972595036856035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of graph neural network-based models (GNNs) has significantly advanced recommender systems by effectively modeling users and items as a bipartite, undirected graph. However, many original graph-based works often adopt results from baseline papers without verifying their validity for the specific configuration under analysis. Our work addresses this issue by focusing on the replicability of results. We present a code that successfully replicates results from six popular and recent graph recommendation models (NGCF, DGCF, LightGCN, SGL, UltraGCN, and GFCF) on three common benchmark datasets (Gowalla, Yelp 2018, and Amazon Book). Additionally, we compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations. Furthermore, we extend our study to two new datasets (Allrecipes and BookCrossing) that lack established setups in existing literature. As the performance on these datasets differs from the previous benchmarks, we analyze the impact of specific dataset characteristics on recommendation accuracy. By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure. The code to reproduce our experiments is available at: https://github.com/sisinflab/Graph-RSs-Reproducibility.
Related papers
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - A Dataset for Learning Graph Representations to Predict Customer Returns
in Fashion Retail [0.243788455857269]
We present a novel dataset collected by ASOS to address the challenge of predicting customer returns in a fashion retail ecosystem.
We first explore the structure of this dataset with a focus on the application of Graph Representation Learning.
We show examples of a return prediction classification task with a selection of baseline models and a graph representation based model.
arXiv Detail & Related papers (2023-02-27T19:14:37Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Graph Generative Model for Benchmarking Graph Neural Networks [73.11514658000547]
We introduce a novel graph generative model that learns and reproduces the distribution of real-world graphs in a privacy-controlled way.
Our model can successfully generate privacy-controlled, synthetic substitutes of large-scale real-world graphs that can be effectively used to benchmark GNN models.
arXiv Detail & Related papers (2022-07-10T06:42:02Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models.
In this paper, we revisit GCN based Collaborative Filtering (CF) based Recommender Systems (RS)
We show that removing non-linearities would enhance recommendation performance, consistent with the theories in simple graph convolutional networks.
We propose a residual network structure that is specifically designed for CF with user-item interaction modeling.
arXiv Detail & Related papers (2020-01-28T04:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.