Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes
- URL: http://arxiv.org/abs/2308.00858v1
- Date: Tue, 1 Aug 2023 22:12:30 GMT
- Title: Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes
- Authors: Stephan Johann Lehmler and Muhammad Saif-ur-Rehman and Tobias
Glasmachers and Ioannis Iossifidis
- Abstract summary: We propose utilizing the framework of processes, which has been underutilized thus far.
We focus solely on activation frequency, leveraging neuroscience techniques used for real neuron spike trains.
We derive parameters describing activation patterns in each network, revealing consistent differences across architectures and training sets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: To gain a deeper understanding of the behavior and learning dynamics of
(deep) artificial neural networks, it is valuable to employ mathematical
abstractions and models. These tools provide a simplified perspective on
network performance and facilitate systematic investigations through
simulations. In this paper, we propose utilizing the framework of stochastic
processes, which has been underutilized thus far.
Our approach models activation patterns of thresholded nodes in (deep)
artificial neural networks as stochastic processes. We focus solely on
activation frequency, leveraging neuroscience techniques used for real neuron
spike trains. During a classification task, we extract spiking activity and use
an arrival process following the Poisson distribution.
We examine observed data from various artificial neural networks in image
recognition tasks, fitting the proposed model's assumptions. Through this, we
derive parameters describing activation patterns in each network. Our analysis
covers randomly initialized, generalizing, and memorizing networks, revealing
consistent differences across architectures and training sets.
Calculating Mean Firing Rate, Mean Fano Factor, and Variances, we find stable
indicators of memorization during learning, providing valuable insights into
network behavior. The proposed model shows promise in describing activation
patterns and could serve as a general framework for future investigations. It
has potential applications in theoretical simulations, pruning, and transfer
learning.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - Neural Activation Patterns (NAPs): Visual Explainability of Learned
Concepts [8.562628320010035]
We present a method that takes into account the entire activation distribution.
By extracting similar activation profiles within the high-dimensional activation space of a neural network layer, we find groups of inputs that are treated similarly.
These input groups represent neural activation patterns (NAPs) and can be used to visualize and interpret learned layer concepts.
arXiv Detail & Related papers (2022-06-20T09:05:57Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
We use a variant of deep generative models called - CycleGAN, to learn the unknown mapping between pre- and post-learning neural activities.
We develop an end-to-end pipeline to preprocess, train and evaluate calcium fluorescence signals, and a procedure to interpret the resulting deep learning models.
arXiv Detail & Related papers (2021-11-25T13:24:19Z) - Dynamic Analysis of Nonlinear Civil Engineering Structures using
Artificial Neural Network with Adaptive Training [2.1202971527014287]
In this study, artificial neural networks are developed with adaptive training algorithms.
The networks can successfully predict the time-history response of the shear frame and the rock structure to real ground motion records.
arXiv Detail & Related papers (2021-11-21T21:14:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.