Single-Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit
Mapping
- URL: http://arxiv.org/abs/2308.00876v1
- Date: Tue, 1 Aug 2023 23:16:16 GMT
- Title: Single-Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit
Mapping
- Authors: Sanjiang Li, Ky Dan Nguyen, Zachary Clare, Yuan Feng
- Abstract summary: We propose a simple and effective method that takes into account the impact of single-qubit gates on circuit depth.
Our method can be combined with many existing QCT algorithms to optimise circuit depth.
We demonstrate the effectiveness of our method by embedding it in SABRE, showing that it can reduce circuit depth by up to 50% and 27% on average.
- Score: 4.680722019621822
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum circuit transformation (QCT, a.k.a. qubit mapping) is a critical step
in quantum circuit compilation. Typically, QCT is achieved by finding an
appropriate initial mapping and using SWAP gates to route the qubits such that
all connectivity constraints are satisfied. The objective of QCT can be to
minimise circuit size or depth. Most existing QCT algorithms prioritise
minimising circuit size, potentially overlooking the impact of single-qubit
gates on circuit depth. In this paper, we first point out that a single SWAP
gate insertion can double the circuit depth, and then propose a simple and
effective method that takes into account the impact of single-qubit gates on
circuit depth. Our method can be combined with many existing QCT algorithms to
optimise circuit depth. The Qiskit SABRE algorithm has been widely accepted as
the state-of-the-art algorithm for optimising both circuit size and depth. We
demonstrate the effectiveness of our method by embedding it in SABRE, showing
that it can reduce circuit depth by up to 50% and 27% on average on, for
instance, Google Sycamore and 117 real quantum circuits from MQTBench.
Related papers
- SWAP-less Implementation of Quantum Algorithms [0.0]
We present a formalism based on tracking the flow of parity quantum information to implement algorithms on devices with limited connectivity.
We leverage the fact that entangling gates not only manipulate quantum states but can also be exploited to transport quantum information.
arXiv Detail & Related papers (2024-08-20T14:51:00Z) - Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT circuits are a common building block of general quantum circuits.
This article presents state-of-the-art algorithms for optimizing the number of CNOT gates.
A simulated evaluation shows that the suggested is almost always beneficial and reduces the number of CNOT gates by up to 10%.
arXiv Detail & Related papers (2024-08-07T19:51:22Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Algorithm-Oriented Qubit Mapping for Variational Quantum Algorithms [3.990724104767043]
Quantum algorithms implemented on near-term devices require qubit mapping due to noise and limited qubit connectivity.
We propose a strategy called algorithm-oriented qubit mapping (AOQMAP) that aims to bridge the gap between exact and scalable mapping methods.
arXiv Detail & Related papers (2023-10-15T13:18:06Z) - Automatic Depth-Optimized Quantum Circuit Synthesis for Diagonal Unitary
Matrices with Asymptotically Optimal Gate Count [9.194399933498323]
It is of great importance to optimize the depth/gate-count when designing quantum circuits for specific tasks.
In this paper, we propose a depth-optimized synthesis algorithm that automatically produces a quantum circuit for any given diagonal unitary matrix.
arXiv Detail & Related papers (2022-12-02T06:58:26Z) - Wide Quantum Circuit Optimization with Topology Aware Synthesis [0.8469686352132708]
Unitary synthesis is an optimization technique that can achieve optimal multi-qubit gate counts while mapping quantum circuits to restrictive qubit topologies.
We present TopAS, a topology aware synthesis tool built with the emphBQSKit framework that preconditions quantum circuits before mapping.
arXiv Detail & Related papers (2022-06-27T21:59:30Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - On the realistic worst case analysis of quantum arithmetic circuits [69.43216268165402]
We show that commonly held intuitions when designing quantum circuits can be misleading.
We show that reducing the T-count can increase the total depth.
We illustrate our method on addition and multiplication circuits using ripple-carry.
arXiv Detail & Related papers (2021-01-12T21:36:16Z) - Using Reinforcement Learning to Perform Qubit Routing in Quantum
Compilers [0.0]
We propose a qubit routing procedure that uses a modified version of the deep Q-learning paradigm.
The system is able to outperform the qubit routing procedures from two of the most advanced quantum compilers currently available.
arXiv Detail & Related papers (2020-07-31T10:57:24Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
We introduce a quantum circuit mapping, QXX, and its machine learning version, QXX-MLP.
The latter infers automatically the optimal QXX parameter values such that the layed out circuit has a reduced depth.
We present empiric evidence for the feasibility of learning the layout method using approximation.
arXiv Detail & Related papers (2020-07-29T05:26:19Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.