DMDC: Dynamic-mask-based dual camera design for snapshot Hyperspectral
Imaging
- URL: http://arxiv.org/abs/2308.01541v1
- Date: Thu, 3 Aug 2023 05:10:58 GMT
- Title: DMDC: Dynamic-mask-based dual camera design for snapshot Hyperspectral
Imaging
- Authors: Zeyu Cai, Chengqian Jin, Feipeng Da
- Abstract summary: We present a dynamic-mask-based dual camera system, which consists of an RGB camera and a CASSI system running in parallel.
First, the system learns the spatial feature distribution of the scene based on the RGB images, then instructs the SLM to encode each scene, and finally sends both RGB and CASSI images to the network for reconstruction.
We further designed the DMDC-net, which consists of two separate networks, a small-scale CNN-based dynamic mask network for dynamic adjustment of the mask and a multimodal reconstruction network for reconstruction using RGB and CASSI measurements.
- Score: 3.3946853660795884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methods are developing rapidly in coded aperture snapshot
spectral imaging (CASSI). The number of parameters and FLOPs of existing
state-of-the-art methods (SOTA) continues to increase, but the reconstruction
accuracy improves slowly. Current methods still face two problems: 1) The
performance of the spatial light modulator (SLM) is not fully developed due to
the limitation of fixed Mask coding. 2) The single input limits the network
performance. In this paper we present a dynamic-mask-based dual camera system,
which consists of an RGB camera and a CASSI system running in parallel. First,
the system learns the spatial feature distribution of the scene based on the
RGB images, then instructs the SLM to encode each scene, and finally sends both
RGB and CASSI images to the network for reconstruction. We further designed the
DMDC-net, which consists of two separate networks, a small-scale CNN-based
dynamic mask network for dynamic adjustment of the mask and a multimodal
reconstruction network for reconstruction using RGB and CASSI measurements.
Extensive experiments on multiple datasets show that our method achieves more
than 9 dB improvement in PSNR over the SOTA.
(https://github.com/caizeyu1992/DMDC)
Related papers
- SelfDRSC++: Self-Supervised Learning for Dual Reversed Rolling Shutter Correction [72.05587640928879]
We propose an enhanced Self-supervised learning framework for Dual reversed RS distortion Correction (SelfDRSC++)
We introduce a lightweight DRSC network that incorporates a bidirectional correlation matching block to refine the joint optimization of optical flows and corrected RS features.
To effectively train the DRSC network, we propose a self-supervised learning strategy that ensures cycle consistency between input and reconstructed dual reversed RS images.
arXiv Detail & Related papers (2024-08-21T08:17:22Z) - The Devil is in the Details: Boosting Guided Depth Super-Resolution via
Rethinking Cross-Modal Alignment and Aggregation [41.12790340577986]
Guided depth super-resolution (GDSR) involves restoring missing depth details using the high-resolution RGB image of the same scene.
Previous approaches have struggled with the heterogeneity and complementarity of the multi-modal inputs, and neglected the issues of modal misalignment, geometrical misalignment, and feature selection.
arXiv Detail & Related papers (2024-01-16T05:37:08Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
We propose a new model-data-driven network to achieve tomoSAR imaging based on multi-dimensional features.
We add two 2D processing modules, both convolutional encoder-decoder structures, to enhance multi-dimensional features of the imaging scene effectively.
Compared with the conventional CS-based FISTA method and DL-based gamma-Net method, the result of our proposed method has better performance on completeness while having decent imaging accuracy.
arXiv Detail & Related papers (2022-11-28T02:01:43Z) - Rolling Shutter Inversion: Bring Rolling Shutter Images to High
Framerate Global Shutter Video [111.08121952640766]
This paper presents a novel deep-learning based solution to the RS temporal super-resolution problem.
By leveraging the multi-view geometry relationship of the RS imaging process, our framework successfully achieves high framerate GS generation.
Our method can produce high-quality GS image sequences with rich details, outperforming the state-of-the-art methods.
arXiv Detail & Related papers (2022-10-06T16:47:12Z) - Self-Gated Memory Recurrent Network for Efficient Scalable HDR
Deghosting [59.04604001936661]
We propose a novel recurrent network-based HDR deghosting method for fusing arbitrary length dynamic sequences.
We introduce a new recurrent cell architecture, namely Self-Gated Memory (SGM) cell, that outperforms the standard LSTM cell.
The proposed approach achieves state-of-the-art performance compared to existing HDR deghosting methods quantitatively across three publicly available datasets.
arXiv Detail & Related papers (2021-12-24T12:36:33Z) - Dual-view Snapshot Compressive Imaging via Optical Flow Aided Recurrent
Neural Network [14.796204921975733]
Dual-view snapshot compressive imaging (SCI) aims to capture videos from two field-of-views (FoVs) in a single snapshot.
It is challenging for existing model-based decoding algorithms to reconstruct each individual scene.
We propose an optical flow-aided recurrent neural network for dual video SCI systems, which provides high-quality decoding in seconds.
arXiv Detail & Related papers (2021-09-11T14:24:44Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive
Sensing [21.243762976995544]
Video snapshot compressive imaging (SCI) is a promising system, where the video frames are coded by different masks and then compressed to a snapshot measurement.
We develop a Meta Modulated Convolutional Network for SCI reconstruction, dubbed MetaSCI.
arXiv Detail & Related papers (2021-03-02T14:53:00Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - Real Image Super Resolution Via Heterogeneous Model Ensemble using
GP-NAS [63.48801313087118]
We propose a new method for image superresolution using deep residual network with dense skip connections.
The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.
arXiv Detail & Related papers (2020-09-02T22:33:23Z) - AdaptiveWeighted Attention Network with Camera Spectral Sensitivity
Prior for Spectral Reconstruction from RGB Images [22.26917280683572]
We propose a novel adaptive weighted attention network (AWAN) for spectral reconstruction.
AWCA and PSNL modules are developed to reallocate channel-wise feature responses.
In the NTIRE 2020 Spectral Reconstruction Challenge, our entries obtain the 1st ranking on the Clean track and the 3rd place on the Real World track.
arXiv Detail & Related papers (2020-05-19T09:21:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.