Bichromatic Rabi Control of Semiconductor Qubits
- URL: http://arxiv.org/abs/2308.01720v2
- Date: Thu, 02 Jan 2025 13:11:40 GMT
- Title: Bichromatic Rabi Control of Semiconductor Qubits
- Authors: Valentin John, Francesco Borsoi, Zoltán György, Chien-An Wang, Gábor Széchenyi, Floor van Riggelen, William I. L. Lawrie, Nico W. Hendrickx, Amir Sammak, Giordano Scappucci, András Pályi, Menno Veldhorst,
- Abstract summary: Electrically driven spin resonance is a powerful technique for controlling semiconductor spin qubits.
However, it faces challenges in qubit addressability and off-resonance driving in larger systems.
We demonstrate coherent bichromatic Rabi control of quantum dot hole spin qubits, offering a spatially selective approach for large qubit arrays.
- Score: 0.0
- License:
- Abstract: Electrically driven spin resonance is a powerful technique for controlling semiconductor spin qubits. However, it faces challenges in qubit addressability and off-resonance driving in larger systems. We demonstrate coherent bichromatic Rabi control of quantum dot hole spin qubits, offering a spatially selective approach for large qubit arrays. By applying simultaneous microwave bursts to different gate electrodes, we observe multichromatic resonance lines and resonance anticrossings that are caused by the ac Stark shift. Our theoretical framework aligns with experimental data, highlighting interdot motion as the dominant mechanism for bichromatic driving.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - All-microwave Lamb shift engineering for a fixed frequency multi-level superconducting qubit [0.0]
Lamb shift is a crucial phenomenon in quantum electrodynamics (QED)
Previous approaches or proposals for controlling the Lamb shift in circuit QED demand overheads in circuit designs or non-perturbative renormalization of the system's eigenbases.
In this work, we propose and demonstrate an all-microwave method for controlling the Lamb shift of fixed-frequency transmons.
arXiv Detail & Related papers (2023-04-24T00:55:16Z) - Phase driving hole spin qubits [0.0]
We introduce an alternative driving mechanism of hole spin qubits, where a far-detuned oscillating field couples to the qubit phase.
Phase driving at radio frequencies induces highly non-trivial spin dynamics, violating the Rabi resonance condition.
We demonstrate a controllable suppression of resonant Rabi oscillations, and their revivals at tunable sidebands.
arXiv Detail & Related papers (2023-03-06T18:37:31Z) - Longitudinal coupling between electrically driven spin-qubits and a resonator [0.0]
We study spin qubits confined in quantum dots at zero magnetic fields that are driven periodically by electrical fields and are coupled to a microwave resonator.
We find both transverse and longitudinal couplings between the Floquet spin qubit and the resonator, which can be selectively activated by modifying the driving frequency.
arXiv Detail & Related papers (2023-01-24T17:42:41Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Quantum dynamics of disordered arrays of interacting superconducting
qubits: signatures of quantum collective states [0.0]
We study theoretically the collective quantum dynamics occurring in superconducting qubits arrays.
Even a weak interaction between qubits can overcome the disorder with a simultaneous formation of the collective excited states.
arXiv Detail & Related papers (2021-11-29T17:35:43Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.