Are Easy Data Easy (for K-Means)
- URL: http://arxiv.org/abs/2308.01926v1
- Date: Wed, 2 Aug 2023 09:40:19 GMT
- Title: Are Easy Data Easy (for K-Means)
- Authors: Mieczys{\l}aw A. K{\l}opotek
- Abstract summary: This paper investigates the capability of correctly recovering well-separated clusters by various brands of the $k$-means algorithm.
A new algorithm is proposed that is a variation of $k$-means++ via repeated subsampling when choosing a seed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the capability of correctly recovering well-separated
clusters by various brands of the $k$-means algorithm. The concept of
well-separatedness used here is derived directly from the common definition of
clusters, which imposes an interplay between the requirements of
within-cluster-homogenicity and between-clusters-diversity. Conditions are
derived for a special case of well-separated clusters such that the global
minimum of $k$-means cost function coincides with the well-separatedness. An
experimental investigation is performed to find out whether or no various
brands of $k$-means are actually capable of discovering well separated
clusters. It turns out that they are not. A new algorithm is proposed that is a
variation of $k$-means++ via repeated {sub}sampling when choosing a seed. The
new algorithm outperforms four other algorithms from $k$-means family on the
task.
Related papers
- A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Replicable Clustering [57.19013971737493]
We propose algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their counterparts in a black-box manner.
We also provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
arXiv Detail & Related papers (2023-02-20T23:29:43Z) - Global $k$-means$++$: an effective relaxation of the global $k$-means
clustering algorithm [0.20305676256390928]
The $k$-means algorithm is a prevalent clustering method due to its simplicity, effectiveness, and speed.
We propose the emphglobal $k$-meanstexttt++ clustering algorithm, which is an effective way of acquiring quality clustering solutions.
arXiv Detail & Related papers (2022-11-22T13:42:53Z) - Asymptotics for The $k$-means [0.6091702876917281]
The $k$-means is one of the most important unsupervised learning techniques in statistics and computer science.
The proposed clustering consistency is more appropriate than the previous criterion consistency for the clustering methods.
It is found that the proposed $k$-means method has lower clustering error rates and is more robust to small clusters and outliers.
arXiv Detail & Related papers (2022-11-18T03:36:58Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
The fuzzy or soft objective is a popular generalization of the well-known $k$-means problem.
We show that by making few queries, the problem becomes easier to solve.
arXiv Detail & Related papers (2021-06-04T02:32:26Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z) - Explainable $k$-Means and $k$-Medians Clustering [25.513261099927163]
We consider using a small decision tree to partition a data set into clusters, so that clusters can be characterized in a straightforward manner.
We show that popular top-down decision tree algorithms may lead to clusterings with arbitrarily large cost.
We design an efficient algorithm that produces explainable clusters using a tree with $k$ leaves.
arXiv Detail & Related papers (2020-02-28T04:21:53Z) - Query-Efficient Correlation Clustering [13.085439249887713]
Correlation clustering is arguably the most natural formulation of clustering.
A main drawback of correlation clustering is that it requires as input the $Theta(n2)$ pairwise similarities.
We devise a correlation clustering algorithm that attains a solution whose expected number of disagreements is at most $3cdot OPT + O(fracn3Q)$.
arXiv Detail & Related papers (2020-02-26T15:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.