Online Multi-Task Learning with Recursive Least Squares and Recursive Kernel Methods
- URL: http://arxiv.org/abs/2308.01938v2
- Date: Sun, 17 Mar 2024 16:22:39 GMT
- Title: Online Multi-Task Learning with Recursive Least Squares and Recursive Kernel Methods
- Authors: Gabriel R. Lencione, Fernando J. Von Zuben,
- Abstract summary: We introduce two novel approaches for Online Multi-Task Learning (MTL) Regression Problems.
We achieve exact and approximate recursions with quadratic per-instance cost on the dimension of the input space.
We compare our online MTL methods to other contenders in a real-world wind speed forecasting case study.
- Score: 50.67996219968513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces two novel approaches for Online Multi-Task Learning (MTL) Regression Problems. We employ a high performance graph-based MTL formulation and develop two alternative recursive versions based on the Weighted Recursive Least Squares (WRLS) and the Online Sparse Least Squares Support Vector Regression (OSLSSVR) strategies. Adopting task-stacking transformations, we demonstrate the existence of a single matrix incorporating the relationship of multiple tasks and providing structural information to be embodied by the MT-WRLS method in its initialization procedure and by the MT-OSLSSVR in its multi-task kernel function. Contrasting the existing literature, which is mostly based on Online Gradient Descent (OGD) or cubic inexact approaches, we achieve exact and approximate recursions with quadratic per-instance cost on the dimension of the input space (MT-WRLS) or on the size of the dictionary of instances (MT-OSLSSVR). We compare our online MTL methods to other contenders in a real-world wind speed forecasting case study, evidencing the significant gain in performance of both proposed approaches.
Related papers
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Tractable Offline Learning of Regular Decision Processes [50.11277112628193]
This work studies offline Reinforcement Learning (RL) in a class of non-Markovian environments called Regular Decision Processes (RDPs)
Ins, the unknown dependency of future observations and rewards from the past interactions can be captured experimentally.
Many algorithms first reconstruct this unknown dependency using automata learning techniques.
arXiv Detail & Related papers (2024-09-04T14:26:58Z) - Multi-Dimensional Optimization for Text Summarization via Reinforcement Learning [12.083649916114402]
We propose multi-objective reinforcement learning tailored to generate balanced summaries across all four dimensions.
Unlike prior ROUGE-based rewards relying on reference summaries, we use a QA-based reward model that aligns with human preferences.
Our approach achieved substantial performance gains compared to baseline models on representative summarization datasets.
arXiv Detail & Related papers (2024-06-01T05:15:12Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
Multitask learning (MTL) leverages task-relatedness to enhance performance.
We employ high-order tensors, with each mode corresponding to a task index, to naturally represent tasks referenced by multiple indices.
We propose a general framework of low-rank MTL methods with tensorized support vector machines (SVMs) and least square support vector machines (LSSVMs)
arXiv Detail & Related papers (2023-08-30T14:28:26Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
We introduce a novel framework called Mode-wise Principal Subspace Pursuit (MOP-UP) to extract hidden variations in both the row and column dimensions for matrix data.
The effectiveness and practical merits of the proposed framework are demonstrated through experiments on both simulated and real datasets.
arXiv Detail & Related papers (2023-07-02T13:59:47Z) - Optimal Multitask Linear Regression and Contextual Bandits under Sparse Heterogeneity [41.772562538698395]
Multitask learning methods improve efficiency by leveraging commonalities across datasets.
We study multitask linear regression and contextual bandits under sparse heterogeneity.
We show that our methods are minimax optimal by providing a number of lower bounds.
arXiv Detail & Related papers (2023-06-09T22:48:13Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.