Tweet Insights: A Visualization Platform to Extract Temporal Insights
from Twitter
- URL: http://arxiv.org/abs/2308.02142v1
- Date: Fri, 4 Aug 2023 05:39:26 GMT
- Title: Tweet Insights: A Visualization Platform to Extract Temporal Insights
from Twitter
- Authors: Daniel Loureiro and Kiamehr Rezaee and Talayeh Riahi and Francesco
Barbieri and Leonardo Neves and Luis Espinosa Anke and Jose Camacho-Collados
- Abstract summary: This paper introduces a large collection of time series data derived from Twitter.
This data comprises the past five years and captures changes in n-gram frequency, similarity, sentiment and topic distribution.
The interface built on top of this data enables temporal analysis for detecting and characterizing shifts in meaning.
- Score: 19.591692602304494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a large collection of time series data derived from
Twitter, postprocessed using word embedding techniques, as well as specialized
fine-tuned language models. This data comprises the past five years and
captures changes in n-gram frequency, similarity, sentiment and topic
distribution. The interface built on top of this data enables temporal analysis
for detecting and characterizing shifts in meaning, including complementary
information to trending metrics, such as sentiment and topic association over
time. We release an online demo for easy experimentation, and we share code and
the underlying aggregated data for future work. In this paper, we also discuss
three case studies unlocked thanks to our platform, showcasing its potential
for temporal linguistic analysis.
Related papers
- Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
We propose a Metadata-informed Time Series Transformer (MetaTST) for time series forecasting.
To tackle the unstructured nature of metadata, MetaTST formalizes them into natural languages by pre-designed templates.
A Transformer encoder is employed to communicate series and metadata tokens, which can extend series representations by metadata information.
arXiv Detail & Related papers (2024-10-04T11:37:55Z) - Extracting Affect Aggregates from Longitudinal Social Media Data with Temporal Adapters for Large Language Models [1.9299251284637737]
This paper proposes temporally aligned Large Language Models (LLMs) as a tool for longitudinal analysis of social media data.
We fine-tune Temporal Adapters for Llama 3 8B on full timelines from a panel of British Twitter users, and extract longitudinal aggregates of emotions and attitudes with established questionnaires.
arXiv Detail & Related papers (2024-09-26T16:02:00Z) - Diffusion Models as Data Mining Tools [87.77999285241219]
This paper demonstrates how to use generative models trained for image synthesis as tools for visual data mining.
We show that after finetuning conditional diffusion models to synthesize images from a specific dataset, we can use these models to define a typicality measure.
This measure assesses how typical visual elements are for different data labels, such as geographic location, time stamps, semantic labels, or even the presence of a disease.
arXiv Detail & Related papers (2024-07-20T17:14:31Z) - When a Language Question Is at Stake. A Revisited Approach to Label
Sensitive Content [0.0]
Article revisits an approach of pseudo-labeling sensitive data on the example of Ukrainian tweets covering the Russian-Ukrainian war.
We provide a fundamental statistical analysis of the obtained data, evaluation of models used for pseudo-labelling, and set further guidelines on how the scientists can leverage the corpus.
arXiv Detail & Related papers (2023-11-17T13:35:10Z) - Pre-trained Language Model with Prompts for Temporal Knowledge Graph
Completion [30.50032335014021]
We propose a novel TKGC model, namely Pre-trained Language Model with Prompts for TKGC (PPT)
We convert a series of sampled quadruples into pre-trained language model inputs and convert intervals between timestamps into different prompts to make coherent sentences with implicit semantic information.
Our model can effectively incorporate information from temporal knowledge graphs into the language models.
arXiv Detail & Related papers (2023-05-13T12:53:11Z) - Temporal Attention for Language Models [24.34396762188068]
We extend the key component of the transformer architecture, i.e., the self-attention mechanism, and propose temporal attention.
temporal attention can be applied to any transformer model and requires the input texts to be accompanied with their relevant time points.
We leverage these representations for the task of semantic change detection.
Our proposed model achieves state-of-the-art results on all the datasets.
arXiv Detail & Related papers (2022-02-04T11:55:34Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
This review provides a comprehensive overview of existing mapping methods for transforming time series into networks.
We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified notation and language.
Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic.
arXiv Detail & Related papers (2021-10-11T13:33:18Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - The Paradigm Discovery Problem [121.79963594279893]
We formalize the paradigm discovery problem and develop metrics for judging systems.
We report empirical results on five diverse languages.
Our code and data are available for public use.
arXiv Detail & Related papers (2020-05-04T16:38:54Z) - Human-like Time Series Summaries via Trend Utility Estimation [13.560018516096754]
We propose a model to create human-like text descriptions for time series.
Our system finds patterns in time series data and ranks these patterns based on empirical observations of human behavior.
The output of our system is a natural language description of time series that attempts to match a human's summary of the same data.
arXiv Detail & Related papers (2020-01-16T06:09:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.