Redundancy Aware Multi-Reference Based Gainwise Evaluation of Extractive Summarization
- URL: http://arxiv.org/abs/2308.02270v2
- Date: Sat, 27 Jul 2024 16:32:40 GMT
- Title: Redundancy Aware Multi-Reference Based Gainwise Evaluation of Extractive Summarization
- Authors: Mousumi Akter, Santu Karmaker,
- Abstract summary: The ROUGE metric has been criticized for its lack of semantic awareness and its ignorance about the ranking quality of the extractive summarizer.
Previous research has introduced a gain-based automated metric called Sem-nCG that addresses these issues.
We propose a redundancy-aware Sem-nCG metric and demonstrate how it can be used to evaluate model summaries against multiple references.
- Score: 3.5297361401370044
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The ROUGE metric is commonly used to evaluate extractive summarization task, but it has been criticized for its lack of semantic awareness and its ignorance about the ranking quality of the extractive summarizer. Previous research has introduced a gain-based automated metric called Sem-nCG that addresses these issues, as it is both rank and semantic aware. However, it does not consider the amount of redundancy present in a model summary and currently does not support evaluation with multiple reference summaries. It is essential to have a model summary that balances importance and diversity, but finding a metric that captures both of these aspects is challenging. In this paper, we propose a redundancy-aware Sem-nCG metric and demonstrate how the revised Sem-nCG metric can be used to evaluate model summaries against multiple references as well which was missing in previous research. Experimental results demonstrate that the revised Sem-nCG metric has a stronger correlation with human judgments compared to the previous Sem-nCG metric and traditional ROUGE and BERTScore metric for both single and multiple reference scenarios.
Related papers
- Mitigating the Impact of Reference Quality on Evaluation of Summarization Systems with Reference-Free Metrics [4.881135687863645]
We introduce a reference-free metric that correlates well with human evaluated relevance, while being very cheap to compute.
We show that this metric can also be used alongside reference-based metrics to improve their robustness in low quality reference settings.
arXiv Detail & Related papers (2024-10-08T11:09:25Z) - Cobra Effect in Reference-Free Image Captioning Metrics [58.438648377314436]
A proliferation of reference-free methods, leveraging visual-language pre-trained models (VLMs), has emerged.
In this paper, we study if there are any deficiencies in reference-free metrics.
We employ GPT-4V as an evaluative tool to assess generated sentences and the result reveals that our approach achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-02-18T12:36:23Z) - Improving abstractive summarization with energy-based re-ranking [4.311978285976062]
We propose an energy-based model that learns to re-rank summaries according to one or a combination of these metrics.
We experiment using several metrics to train our energy-based re-ranker and show that it consistently improves the scores achieved by the predicted summaries.
arXiv Detail & Related papers (2022-10-27T15:43:36Z) - WIDAR -- Weighted Input Document Augmented ROUGE [26.123086537577155]
The proposed metric WIDAR is designed to adapt the evaluation score according to the quality of the reference summary.
The proposed metric correlates better than ROUGE by 26%, 76%, 82%, and 15%, respectively, in coherence, consistency, fluency, and relevance on human judgement scores.
arXiv Detail & Related papers (2022-01-23T14:40:42Z) - A Training-free and Reference-free Summarization Evaluation Metric via
Centrality-weighted Relevance and Self-referenced Redundancy [60.419107377879925]
We propose a training-free and reference-free summarization evaluation metric.
Our metric consists of a centrality-weighted relevance score and a self-referenced redundancy score.
Our methods can significantly outperform existing methods on both multi-document and single-document summarization evaluation.
arXiv Detail & Related papers (2021-06-26T05:11:27Z) - REAM$\sharp$: An Enhancement Approach to Reference-based Evaluation
Metrics for Open-domain Dialog Generation [63.46331073232526]
We present an enhancement approach to Reference-based EvAluation Metrics for open-domain dialogue systems.
A prediction model is designed to estimate the reliability of the given reference set.
We show how its predicted results can be helpful to augment the reference set, and thus improve the reliability of the metric.
arXiv Detail & Related papers (2021-05-30T10:04:13Z) - Understanding the Extent to which Summarization Evaluation Metrics
Measure the Information Quality of Summaries [74.28810048824519]
We analyze the token alignments used by ROUGE and BERTScore to compare summaries.
We argue that their scores largely cannot be interpreted as measuring information overlap.
arXiv Detail & Related papers (2020-10-23T15:55:15Z) - Unsupervised Reference-Free Summary Quality Evaluation via Contrastive
Learning [66.30909748400023]
We propose to evaluate the summary qualities without reference summaries by unsupervised contrastive learning.
Specifically, we design a new metric which covers both linguistic qualities and semantic informativeness based on BERT.
Experiments on Newsroom and CNN/Daily Mail demonstrate that our new evaluation method outperforms other metrics even without reference summaries.
arXiv Detail & Related papers (2020-10-05T05:04:14Z) - Towards Question-Answering as an Automatic Metric for Evaluating the
Content Quality of a Summary [65.37544133256499]
We propose a metric to evaluate the content quality of a summary using question-answering (QA)
We demonstrate the experimental benefits of QA-based metrics through an analysis of our proposed metric, QAEval.
arXiv Detail & Related papers (2020-10-01T15:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.