Algorithm for evaluating distance-based entanglement measures
- URL: http://arxiv.org/abs/2308.02326v1
- Date: Fri, 4 Aug 2023 13:42:55 GMT
- Title: Algorithm for evaluating distance-based entanglement measures
- Authors: Yixuan Hu, Ye-Chao Liu, Jiangwei Shang
- Abstract summary: We propose an efficient algorithm for evaluating distance-based entanglement measures.
Our approach builds on Gilbert's algorithm for convex optimization, providing a reliable upper bound on the entanglement of a given arbitrary state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying entanglement in quantum systems is an important yet challenging
task due to its NP-hard nature. In this work, we propose an efficient algorithm
for evaluating distance-based entanglement measures. Our approach builds on
Gilbert's algorithm for convex optimization, providing a reliable upper bound
on the entanglement of a given arbitrary state. We demonstrate the
effectiveness of our algorithm by applying it to various examples, such as
calculating the squared Bures metric of entanglement as well as the relative
entropy of entanglement for GHZ states, $W$ states, Horodecki states, and
chessboard states. These results demonstrate that our algorithm is a versatile
and accurate tool that can quickly provide reliable upper bounds for
entanglement measures.
Related papers
- On Uncertainty Quantification for Near-Bayes Optimal Algorithms [2.622066970118316]
We show that it is possible to recover the Bayesian posterior defined by the task distribution, which is unknown but optimal in this setting, by building a martingale posterior using the algorithm.
Experiments based on a variety of non-NN and NN algorithms demonstrate the efficacy of our method.
arXiv Detail & Related papers (2024-03-28T12:42:25Z) - Optimal Coherent Quantum Phase Estimation via Tapering [0.0]
Quantum phase estimation is one of the fundamental primitives that underpins many quantum algorithms.
We propose an improved version of the standard algorithm called the tapered quantum phase estimation algorithm.
Our algorithm achieves the optimal query complexity without requiring the expensive coherent median technique.
arXiv Detail & Related papers (2024-03-27T18:17:23Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - Structural Estimation of Markov Decision Processes in High-Dimensional
State Space with Finite-Time Guarantees [39.287388288477096]
We consider the task of estimating a structural model of dynamic decisions by a human agent based upon the observable history of implemented actions and visited states.
This problem has an inherent nested structure: in the inner problem, an optimal policy for a given reward function is identified while in the outer problem, a measure of fit is maximized.
We propose a single-loop estimation algorithm with finite time guarantees that is equipped to deal with high-dimensional state spaces.
arXiv Detail & Related papers (2022-10-04T00:11:38Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - Self-Guided Quantum State Learning for Mixed States [7.270980742378388]
The salient features of our algorithm are efficient $O left( d3 right)$ post-processing in the infidelity dimension $d$ of the state.
A higher resilience against measurement noise makes our algorithm suitable for noisy intermediate-scale quantum applications.
arXiv Detail & Related papers (2021-06-11T04:40:26Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Optimal and Practical Algorithms for Smooth and Strongly Convex
Decentralized Optimization [21.555331273873175]
We consider the task of decentralized minimization of the sum of smooth strongly convex functions stored across the nodes of a network.
We propose two new algorithms for this decentralized optimization problem and equip them with complexity guarantees.
arXiv Detail & Related papers (2020-06-21T11:23:20Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.