Influence of the algorithm's reliability and transparency in the user's
decision-making process
- URL: http://arxiv.org/abs/2308.02492v1
- Date: Thu, 13 Jul 2023 03:13:49 GMT
- Title: Influence of the algorithm's reliability and transparency in the user's
decision-making process
- Authors: Sourabh Zanwar
- Abstract summary: We conduct an online empirical study with 61 participants to find out how the change in transparency and reliability of an algorithm could impact users' decision-making process.
The results indicate that people show at least moderate confidence in the decisions of the algorithm even when the reliability is bad.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithms have been becoming increasingly relevant for various
decision-making processes in the forms of Decision Support Systems or
Decision-making systems in areas such as Criminal-Justice systems, Job
Application Filtering, Medicine, and Healthcare to name a few. It is crucial
for these algorithms to be fair and for the users to have confidence in these
decisions, especially in the above contexts, because they have a high impact on
society. We conduct an online empirical study with 61 participants to find out
how the change in transparency and reliability of an algorithm which determines
the probability of lesions being melanoma could impact users' decision-making
process, as well as the confidence in the decisions made by the algorithm. The
results indicate that people show at least moderate confidence in the decisions
of the algorithm even when the reliability is bad. However, they would not
blindly follow the algorithm's wrong decisions.
Related papers
- Online Decision Mediation [72.80902932543474]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior.
In clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances.
arXiv Detail & Related papers (2023-10-28T05:59:43Z) - Causal Fairness for Outcome Control [68.12191782657437]
We study a specific decision-making task called outcome control in which an automated system aims to optimize an outcome variable $Y$ while being fair and equitable.
In this paper, we first analyze through causal lenses the notion of benefit, which captures how much a specific individual would benefit from a positive decision.
We then note that the benefit itself may be influenced by the protected attribute, and propose causal tools which can be used to analyze this.
arXiv Detail & Related papers (2023-06-08T09:31:18Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
Uncertainty is a pervasive challenge in decision and risk management.
This paper develops a systematic understanding of such strategies, determine their range of application, and develop a framework to better employ them.
arXiv Detail & Related papers (2023-01-18T19:16:23Z) - Algorithmic Assistance with Recommendation-Dependent Preferences [2.864550757598007]
We consider the effect and design of algorithmic recommendations when they affect choices.
We show that recommendation-dependent preferences create inefficiencies where the decision-maker is overly responsive to the recommendation.
arXiv Detail & Related papers (2022-08-16T09:24:47Z) - A Human-Centric Perspective on Fairness and Transparency in Algorithmic
Decision-Making [0.0]
Automated decision systems (ADS) are increasingly used for consequential decision-making.
Non-transparent systems are prone to yield unfair outcomes because their sanity is challenging to assess and calibrate.
I aim to make the following three main contributions through my doctoral thesis.
arXiv Detail & Related papers (2022-04-29T18:31:04Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - System Cards for AI-Based Decision-Making for Public Policy [5.076419064097733]
This work proposes a system accountability benchmark for formal audits of artificial intelligence-based decision-aiding systems.
It consists of 56 criteria organized within a four-by-four matrix composed of rows focused on (i) data, (ii) model, (iii) code, (iv) system, and columns focused on (a) development, (b) assessment, (c) mitigation, and (d) assurance.
arXiv Detail & Related papers (2022-03-01T18:56:45Z) - Modularity in Reinforcement Learning via Algorithmic Independence in
Credit Assignment [79.5678820246642]
We show that certain action-value methods are more sample efficient than policy-gradient methods on transfer problems that require only sparse changes to a sequence of previously optimal decisions.
We generalize the recently proposed societal decision-making framework as a more granular formalism than the Markov decision process.
arXiv Detail & Related papers (2021-06-28T21:29:13Z) - Algorithmic risk assessments can alter human decision-making processes
in high-stakes government contexts [19.265010348250897]
We show that risk assessments can alter decision-making processes by increasing the salience of risk as a factor in decisions and that these shifts could exacerbate racial disparities.
These results demonstrate that improving human prediction accuracy with algorithms does not necessarily improve human decisions and highlight the need to experimentally test how government algorithms are used by human decision-makers.
arXiv Detail & Related papers (2020-12-09T23:44:45Z) - Dimensions of Diversity in Human Perceptions of Algorithmic Fairness [37.372078500394984]
We explore how people's perceptions of procedural algorithmic fairness relate to their demographics and personal experiences.
Political views and personal experience with the algorithmic decision context significantly influence perceptions about the fairness of using different features for bail decision-making.
arXiv Detail & Related papers (2020-05-02T11:59:39Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.