VN-Solver: Vision-based Neural Solver for Combinatorial Optimization
over Graphs
- URL: http://arxiv.org/abs/2308.03185v1
- Date: Sun, 6 Aug 2023 18:33:11 GMT
- Title: VN-Solver: Vision-based Neural Solver for Combinatorial Optimization
over Graphs
- Authors: Mina Samizadeh, Guangmo Tong
- Abstract summary: We explore a vision-based method that is conceptually novel: can neural models solve graph optimization problems by textittaking a look at the graph pattern?
Our results suggest that the performance of such vision-based methods is not only non-trivial but also comparable to the state-of-the-art matrix-based methods, which opens a new avenue for developing data-driven optimization solvers.
- Score: 6.457205049532316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven approaches have been proven effective in solving combinatorial
optimization problems over graphs such as the traveling salesman problems and
the vehicle routing problem. The rationale behind such methods is that the
input instances may follow distributions with salient patterns that can be
leveraged to overcome the worst-case computational hardness. For optimization
problems over graphs, the common practice of neural combinatorial solvers
consumes the inputs in the form of adjacency matrices. In this paper, we
explore a vision-based method that is conceptually novel: can neural models
solve graph optimization problems by \textit{taking a look at the graph
pattern}? Our results suggest that the performance of such vision-based methods
is not only non-trivial but also comparable to the state-of-the-art
matrix-based methods, which opens a new avenue for developing data-driven
optimization solvers.
Related papers
- Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
We show that optimal fair representations possess several useful structural properties.
We then show that these approxing problems can be solved efficiently via concave programming methods.
arXiv Detail & Related papers (2024-09-26T08:46:48Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Symmetry-preserving graph attention network to solve routing problems at
multiple resolutions [1.9304772860080408]
We introduce the first-ever completely equivariant model and training to solve problems.
It is essential to capture the multiscale structure of the input graph.
We propose a Multiresolution scheme in combination with Equi Graph Attention network (mEGAT) architecture.
arXiv Detail & Related papers (2023-10-24T06:22:20Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - Modeling Design and Control Problems Involving Neural Network Surrogates [1.1602089225841632]
We consider nonlinear optimization problems that involve surrogate models represented by neural networks.
We show how to directly embed neural network evaluation into optimization models, highlight a difficulty with this approach that can prevent convergence.
We present two alternative formulations of these problems in the specific case of feedforward neural networks with ReLU activation.
arXiv Detail & Related papers (2021-11-20T01:09:15Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
We investigate whether effective primals can be automatically learned via machine learning.
We propose a new method to represent an optimization problem as a graph, and train a Graph Conal Network on solved problem instances with known optimal solutions.
The prediction of variable solutions is then leveraged by a novel configuration of the B&B method, Probabilistic Branching with guided Depth-first Search.
arXiv Detail & Related papers (2021-07-02T06:46:23Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - A Generative Graph Method to Solve the Travelling Salesman Problem [1.552282932199974]
We propose to use the novel Graph Learning Network (GLN), a generative approach, to approximately solve the Travelling Salesman Problem (TSP)
GLN model learns directly the pattern of TSP instances as training dataset, encodes the graph properties, and merge the different node embeddings to output node-to-node an optimal tour.
arXiv Detail & Related papers (2020-07-09T17:23:55Z) - Model Inversion Networks for Model-Based Optimization [110.24531801773392]
We propose model inversion networks (MINs), which learn an inverse mapping from scores to inputs.
MINs can scale to high-dimensional input spaces and leverage offline logged data for both contextual and non-contextual optimization problems.
We evaluate MINs on tasks from the Bayesian optimization literature, high-dimensional model-based optimization problems over images and protein designs, and contextual bandit optimization from logged data.
arXiv Detail & Related papers (2019-12-31T18:06:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.