Real-time Strawberry Detection Based on Improved YOLOv5s Architecture
for Robotic Harvesting in open-field environment
- URL: http://arxiv.org/abs/2308.03998v4
- Date: Thu, 12 Oct 2023 11:49:34 GMT
- Title: Real-time Strawberry Detection Based on Improved YOLOv5s Architecture
for Robotic Harvesting in open-field environment
- Authors: Zixuan He (1)(2), Salik Ram Khanal (1)(2), Xin Zhang (3), Manoj Karkee
(1)(2), Qin Zhang (1)(2) ((1) Center for Precision and Automated Agricultural
Systems, Washington State University, (2) Department of Biological Systems
Engineering, Washington State University, (3) Department of Agricultural and
Biological Engineering, Mississippi State University)
- Abstract summary: This study proposed a YOLOv5-based custom object detection model to detect strawberries in an outdoor environment.
The highest mean average precision of 80.3% was achieved using the proposed architecture.
The model is fast enough for real time strawberry detection and localization for the robotic picking.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposed a YOLOv5-based custom object detection model to detect
strawberries in an outdoor environment. The original architecture of the
YOLOv5s was modified by replacing the C3 module with the C2f module in the
backbone network, which provided a better feature gradient flow. Secondly, the
Spatial Pyramid Pooling Fast in the final layer of the backbone network of
YOLOv5s was combined with Cross Stage Partial Net to improve the generalization
ability over the strawberry dataset in this study. The proposed architecture
was named YOLOv5s-Straw. The RGB images dataset of the strawberry canopy with
three maturity classes (immature, nearly mature, and mature) was collected in
open-field environment and augmented through a series of operations including
brightness reduction, brightness increase, and noise adding. To verify the
superiority of the proposed method for strawberry detection in open-field
environment, four competitive detection models (YOLOv3-tiny, YOLOv5s,
YOLOv5s-C2f, and YOLOv8s) were trained, and tested under the same computational
environment and compared with YOLOv5s-Straw. The results showed that the
highest mean average precision of 80.3% was achieved using the proposed
architecture whereas the same was achieved with YOLOv3-tiny, YOLOv5s,
YOLOv5s-C2f, and YOLOv8s were 73.4%, 77.8%, 79.8%, 79.3%, respectively.
Specifically, the average precision of YOLOv5s-Straw was 82.1% in the immature
class, 73.5% in the nearly mature class, and 86.6% in the mature class, which
were 2.3% and 3.7%, respectively, higher than that of the latest YOLOv8s. The
model included 8.6*10^6 network parameters with an inference speed of 18ms per
image while the inference speed of YOLOv8s had a slower inference speed of
21.0ms and heavy parameters of 11.1*10^6, which indicates that the proposed
model is fast enough for real time strawberry detection and localization for
the robotic picking.
Related papers
- What is YOLOv6? A Deep Insight into the Object Detection Model [0.0]
This work focuses on the YOLOv6 object detection model in depth.
YOLOv6-N achieves 37.5% AP at 1187 FPS on an NVIDIA Tesla T4 GPU.
YOLOv6-S reaches 45.0% AP at 484 FPS, outperforming models like PPYOLOE-S, YOLOv5-S, YOLOX-S, and YOLOv8-S in the same class.
arXiv Detail & Related papers (2024-12-17T15:26:15Z) - Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors [0.0]
This study presents a benchmark analysis of various YOLO (You Only Look Once) algorithms, from YOLOv3 to the newest addition, YOLO11.
It evaluates their performance on three diverse datasets: Traffic Signs (with varying object sizes), African Wildlife (with diverse aspect ratios and at least one instance of the object per image), and Ships and Vessels (with small-sized objects of a single class)
arXiv Detail & Related papers (2024-10-31T20:45:00Z) - YOLO11 and Vision Transformers based 3D Pose Estimation of Immature Green Fruits in Commercial Apple Orchards for Robotic Thinning [0.4143603294943439]
Method for 3D pose estimation of immature green apples (fruitlets) in commercial orchards was developed.
YOLO11(or YOLOv11) object detection and pose estimation algorithm alongside Vision Transformers (ViT) for depth estimation.
YOLO11n surpassed all configurations of YOLO11 and YOLOv8 in terms of box precision and pose precision.
arXiv Detail & Related papers (2024-10-21T17:00:03Z) - Performance Evaluation of YOLOv8 Model Configurations, for Instance Segmentation of Strawberry Fruit Development Stages in an Open Field Environment [0.0]
This study evaluates the performance of YOLOv8 model configurations for instance segmentation of strawberries into ripe and unripe stages in an open field environment.
The YOLOv8n model demonstrated superior segmentation accuracy with a mean Average Precision (mAP) of 80.9%, outperforming other YOLOv8 configurations.
arXiv Detail & Related papers (2024-08-11T00:33:45Z) - Quantizing YOLOv7: A Comprehensive Study [0.0]
This paper studies the effectiveness of a variety of quantization schemes on the pre-trained weights of the state-of-the-art YOLOv7 model.
Results show that using 4-bit quantization coupled with the combination of different granularities results in 3.92x and 3.86x memory-saving for uniform and non-uniform quantization.
arXiv Detail & Related papers (2024-07-06T03:23:04Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism [40.31805155724484]
New designed model named as Gold-YOLO, which boosts the multi-scale feature fusion capabilities.
We implement MAE-style pretraining in the YOLO-series for the first time, allowing YOLOseries models could be to benefit from unsupervised pretraining.
arXiv Detail & Related papers (2023-09-20T14:03:47Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also serve as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - High-Performance Fine Defect Detection in Artificial Leather Using Dual Feature Pool Object Detection [40.14938518877818]
Based on the characteristics of fine defects in artificial leather, four innovative structures, namely DFP, IFF, AMP, and EOS, were designed.
These advancements led to the proposal of a high-performance artificial leather fine defect detection model named YOLOD.
YOLOD demonstrated outstanding performance on the artificial leather defect dataset, achieving an impressive increase of 11.7% - 13.5% in AP_50 compared to YOLOv5.
YOLOD also exhibited remarkable performance on the general MS-COCO dataset, with an increase of 0.4% - 2.6% in AP compared to YOLOv5.
arXiv Detail & Related papers (2023-07-31T15:18:54Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.