MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion
- URL: http://arxiv.org/abs/2308.04249v1
- Date: Tue, 8 Aug 2023 13:28:34 GMT
- Title: MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion
- Authors: Yizhuo Lu, Changde Du, Qiongyi zhou, Dianpeng Wang, Huiguang He
- Abstract summary: We propose a two-stage image reconstruction model called MindDiffuser.
In Stage 1, the VQ-VAE latent representations and the CLIP text embeddings decoded from fMRI are put into Stable Diffusion.
In Stage 2, we utilize the CLIP visual feature decoded from fMRI as supervisory information, and continually adjust the two feature vectors decoded in Stage 1 through backpagation to align the structural information.
- Score: 7.597218661195779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing visual stimuli from brain recordings has been a meaningful and
challenging task. Especially, the achievement of precise and controllable image
reconstruction bears great significance in propelling the progress and
utilization of brain-computer interfaces. Despite the advancements in complex
image reconstruction techniques, the challenge persists in achieving a cohesive
alignment of both semantic (concepts and objects) and structure (position,
orientation, and size) with the image stimuli. To address the aforementioned
issue, we propose a two-stage image reconstruction model called MindDiffuser.
In Stage 1, the VQ-VAE latent representations and the CLIP text embeddings
decoded from fMRI are put into Stable Diffusion, which yields a preliminary
image that contains semantic information. In Stage 2, we utilize the CLIP
visual feature decoded from fMRI as supervisory information, and continually
adjust the two feature vectors decoded in Stage 1 through backpropagation to
align the structural information. The results of both qualitative and
quantitative analyses demonstrate that our model has surpassed the current
state-of-the-art models on Natural Scenes Dataset (NSD). The subsequent
experimental findings corroborate the neurobiological plausibility of the
model, as evidenced by the interpretability of the multimodal feature employed,
which align with the corresponding brain responses.
Related papers
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Decoding Realistic Images from Brain Activity with Contrastive
Self-supervision and Latent Diffusion [29.335943994256052]
Reconstructing visual stimuli from human brain activities provides a promising opportunity to advance our understanding of the brain's visual system.
We propose a two-phase framework named Contrast and Diffuse (CnD) to decode realistic images from functional magnetic resonance imaging (fMRI) recordings.
arXiv Detail & Related papers (2023-09-30T09:15:22Z) - Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain
Activities [31.448924808940284]
We introduce a two-phase fMRI representation learning framework.
The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations.
The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder.
arXiv Detail & Related papers (2023-05-26T19:16:23Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion [8.299415606889024]
We propose a two-stage image reconstruction model called MindDiffuser.
In Stage 1, the VQ-VAE latent representations and the CLIP text embeddings decoded from fMRI are put into the image-to-image process of Stable Diffusion.
In Stage 2, we utilize the low-level CLIP visual features decoded from fMRI as supervisory information.
arXiv Detail & Related papers (2023-03-24T16:41:42Z) - Natural scene reconstruction from fMRI signals using generative latent
diffusion [1.90365714903665]
We present a two-stage scene reconstruction framework called Brain-Diffuser''
In the first stage, we reconstruct images that capture low-level properties and overall layout using a VDVAE (Very Deep Vari Autoencoder) model.
In the second stage, we use the image-to-image framework of a latent diffusion model conditioned on predicted multimodal (text and visual) features.
arXiv Detail & Related papers (2023-03-09T15:24:26Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIP is a task-agnostic fMRI-based brain decoding model.
It bridges the modality gap between brain activity, image, and text.
BrainCLIP can reconstruct visual stimuli with high semantic fidelity.
arXiv Detail & Related papers (2023-02-25T03:28:54Z) - Facial Image Reconstruction from Functional Magnetic Resonance Imaging
via GAN Inversion with Improved Attribute Consistency [5.705640492618758]
We propose a new framework to reconstruct facial images from fMRI data.
The proposed framework accomplishes two goals: (1) reconstructing clear facial images from fMRI data and (2) maintaining the consistency of semantic characteristics.
arXiv Detail & Related papers (2022-07-03T11:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.