Sci-CoT: Leveraging Large Language Models for Enhanced Knowledge
Distillation in Small Models for Scientific QA
- URL: http://arxiv.org/abs/2308.04679v1
- Date: Wed, 9 Aug 2023 03:18:07 GMT
- Title: Sci-CoT: Leveraging Large Language Models for Enhanced Knowledge
Distillation in Small Models for Scientific QA
- Authors: Yuhan Ma and Haiqi Jiang and Chenyou Fan
- Abstract summary: Large Language Models (LLMs) have shown outstanding performance across wide range of downstream tasks.
We propose Sci-CoT, a two-stage framework that separates the processes of generating rationales and inferring answers.
Our 80-million parameter model is able to exceed the performance of BLOOM-176B in the ARC-Easy dataset under the few shot setting.
- Score: 5.117094291273979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown outstanding performance across wide
range of downstream tasks. This competency is attributed to their substantial
parameter size and pre-training on extensive corpus. Moreover, LLMs have
exhibited enhanced reasoning capabilities in tackling complex reasoning tasks,
owing to the utilization of a method named ``Chain-of-Thought (CoT)
prompting''. This method is designed to generate intermediate reasoning steps
that guide the inference of the final answer. However, it is essential to
highlight that these advanced reasoning abilities appear to emerge in models
with a minimum of 10 billion parameters, thereby limiting its efficacy in
situations where computational resources are constrained. In this paper, we
investigate the possibility of transferring the reasoning capabilities of LLMs
to smaller models via knowledge distillation. Specifically, we propose Sci-CoT,
a two-stage framework that separates the processes of generating rationales and
inferring answers. This method enables a more efficient use of rationales
during the answer inference stage, leading to improved performance on
scientific question-answering tasks. Utilizing Sci-CoT, our 80-million
parameter model is able to exceed the performance of BLOOM-176B in the ARC-Easy
dataset under the few shot setting.
Related papers
- Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
This study introduces a novel framework for training smaller language models in function calling.
It focuses on specific logical and mathematical reasoning tasks.
The approach aims to improve performances of small-scale models for these tasks using function calling.
arXiv Detail & Related papers (2024-10-24T16:27:35Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
Large language models (LLMs) have demonstrated remarkable potential across numerous applications.
In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations.
We investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance.
arXiv Detail & Related papers (2024-09-03T07:01:46Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Key-Point-Driven Mathematical Reasoning Distillation of Large Language Model [15.542737858152053]
We propose Key-Point-Driven Mathematical Reasoning Distillation (KPDD) to mitigate misunderstanding errors.
KPDD enhances the reasoning performance of SLMs by breaking down the problem-solving process into three stages.
Experiments show KPDD-CoT significantly improves reasoning abilities, while KPDD-PoT achieves state-of-the-art performance in mathematical reasoning tasks.
arXiv Detail & Related papers (2024-07-14T11:41:03Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - DialCoT Meets PPO: Decomposing and Exploring Reasoning Paths in Smaller
Language Models [18.96271708412086]
Chain-of-Thought (CoT) prompting has proven to be effective in enhancing the reasoning capabilities of Large Language Models (LLMs) with at least 100 billion parameters.
We introduce Dialogue-guided Chain-of-Thought (DialCoT) which employs a dialogue format to generate intermediate reasoning steps, guiding the model toward the final answer.
arXiv Detail & Related papers (2023-10-08T08:52:13Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.