Indirect Cooling of Weakly Coupled Trapped-Ion Mechanical Oscillators
- URL: http://arxiv.org/abs/2308.05158v2
- Date: Wed, 3 Apr 2024 11:19:45 GMT
- Title: Indirect Cooling of Weakly Coupled Trapped-Ion Mechanical Oscillators
- Authors: Pan-Yu Hou, Jenny J. Wu, Stephen D. Erickson, Giorgio Zarantonello, Adam D. Brandt, Daniel C. Cole, Andrew C. Wilson, Daniel H. Slichter, Dietrich Leibfried,
- Abstract summary: Cooling the motion of trapped ions to near the quantum ground state is crucial for many applications in quantum information processing.
We overcome this challenge by coupling a mode with weak cooling radiation interaction to one with strong cooling radiation interaction.
We demonstrate near-ground-state cooling of motional modes with weak or zero cooling radiation interaction in multi-ion crystals of the same and mixed ion species.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooling the motion of trapped ions to near the quantum ground state is crucial for many applications in quantum information processing and quantum metrology. However, certain motional modes of trapped-ion crystals can be difficult to cool due to weak or zero interaction between the modes and the cooling radiation, typically laser beams. We overcome this challenge by coupling a mode with weak cooling radiation interaction to one with strong cooling radiation interaction using parametric modulation of the trapping potential, thereby enabling indirect cooling of the former. In this way, we demonstrate near-ground-state cooling of motional modes with weak or zero cooling radiation interaction in multi-ion crystals of the same and mixed ion species, specifically $^9$Be$^+$-$^9$Be$^+$, $^9$Be$^+$-$^{25}$Mg$^+$, and $^9$Be$^+$-$^{25}$Mg$^+$-$^9$Be$^+$ crystals. This approach can be generally applied to any Coulomb crystal where certain motional modes cannot be directly cooled efficiently, including crystals containing molecular ions, highly-charged ions, charged fundamental particles, or charged macroscopic objects.
Related papers
- Numerical Simulations of 3D Ion Crystal Dynamics in a Penning Trap using the Fast Multipole Method [0.0]
We simulate the dynamics, including laser cooling, of 3D ion crystals confined in a Penning trap.
We show that the simulation time scales linearly with ion number, rather than with the square of the ion number.
arXiv Detail & Related papers (2024-05-22T20:17:28Z) - Laser Scheme for Doppler Cooling of the Hydroxyl Cation (OH$^+$) [0.0]
We report on a cycling scheme for Doppler cooling of trapped OH$+$ ions using transitions between the electronic ground state $X3Sigma-$ and the first excited triplet state $A3Pi$.
We have found that coupling into other electronic states is strongly suppressed, and have calculated the number of photon scatterings required to cool OH$+$ to a temperature where Raman sideband cooling can take over.
arXiv Detail & Related papers (2023-08-28T17:32:44Z) - An anti-maser for quantum-limited cooling of a microwave cavity [58.720142291102135]
We experimentally demonstrate how to generate a state in condensed matter at moderate cryogenic temperatures.
This state is then used to efficiently remove microwave photons from a cavity.
Such an "anti-maser" device could be extremely beneficial for applications that would normally require cooling to millikelvin temperatures.
arXiv Detail & Related papers (2023-07-24T11:12:29Z) - Quantum Control of Atom-Ion Charge Exchange via Light-induced Conical
Intersections [66.33913750180542]
Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces.
We predict significant or measurable non-adiabatic effects in an ultracold atom-ion charge-exchange reaction.
In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as $10-9$ cm$3$/s.
arXiv Detail & Related papers (2023-04-15T14:43:21Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Sympathetic cooling of a trapped proton mediated by an LC circuit [0.0]
We demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps.
As this technique uses only image-current interactions, it can be easily applied to an experiment with antiprotons.
arXiv Detail & Related papers (2021-08-29T00:48:25Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Double-EIT Ground-State Cooling of Stationary Two-Dimensional Ion
Lattices [13.151113218912656]
We experimentally investigate double electromagnetically induced transparency (double-EIT) cooling of two-dimensional ion crystals confined in a Paul trap.
The double-EIT groundstate cooling is observed for Yb ions with clock state, for which EIT cooling has not been realized like many other ions with a simple $Lambda$-scheme.
This method can be extended to other hyperfine qubits, and near ground-state cooling of stationary 2D crystals with large numbers of ions may advance the field of quantum information sciences.
arXiv Detail & Related papers (2020-03-23T13:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.