SegMatch: A semi-supervised learning method for surgical instrument
segmentation
- URL: http://arxiv.org/abs/2308.05232v1
- Date: Wed, 9 Aug 2023 21:30:18 GMT
- Title: SegMatch: A semi-supervised learning method for surgical instrument
segmentation
- Authors: Meng Wei, Charlie Budd, Luis C. Garcia-Peraza-Herrera, Reuben Dorent,
Miaojing Shi, Tom Vercauteren
- Abstract summary: We propose SegMatch, a semi supervised learning method to reduce the need for expensive annotation for laparoscopic and robotic surgical images.
SegMatch builds on FixMatch, a widespread semi supervised classification pipeline combining consistency regularization and pseudo labelling.
Our results demonstrate that adding unlabelled data for training purposes allows us to surpass the performance of fully supervised approaches.
- Score: 10.223709180135419
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surgical instrument segmentation is recognised as a key enabler to provide
advanced surgical assistance and improve computer assisted interventions. In
this work, we propose SegMatch, a semi supervised learning method to reduce the
need for expensive annotation for laparoscopic and robotic surgical images.
SegMatch builds on FixMatch, a widespread semi supervised classification
pipeline combining consistency regularization and pseudo labelling, and adapts
it for the purpose of segmentation. In our proposed SegMatch, the unlabelled
images are weakly augmented and fed into the segmentation model to generate a
pseudo-label to enforce the unsupervised loss against the output of the model
for the adversarial augmented image on the pixels with a high confidence score.
Our adaptation for segmentation tasks includes carefully considering the
equivariance and invariance properties of the augmentation functions we rely
on. To increase the relevance of our augmentations, we depart from using only
handcrafted augmentations and introduce a trainable adversarial augmentation
strategy. Our algorithm was evaluated on the MICCAI Instrument Segmentation
Challenge datasets Robust-MIS 2019 and EndoVis 2017. Our results demonstrate
that adding unlabelled data for training purposes allows us to surpass the
performance of fully supervised approaches which are limited by the
availability of training data in these challenges. SegMatch also outperforms a
range of state-of-the-art semi-supervised learning semantic segmentation models
in different labelled to unlabelled data ratios.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Dense FixMatch: a simple semi-supervised learning method for pixel-wise
prediction tasks [68.36996813591425]
We propose Dense FixMatch, a simple method for online semi-supervised learning of dense and structured prediction tasks.
We enable the application of FixMatch in semi-supervised learning problems beyond image classification by adding a matching operation on the pseudo-labels.
Dense FixMatch significantly improves results compared to supervised learning using only labeled data, approaching its performance with 1/4 of the labeled samples.
arXiv Detail & Related papers (2022-10-18T15:02:51Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation [0.0]
We propose a semi-supervised segmentation network based on contrastive learning.
In contrast to the previous state-of-the-art, we introduce a contrastive learning form of dual-view training.
Our proposed method outperforms state-of-the-art semi-supervised and fully supervised segmentation algorithms consistently.
arXiv Detail & Related papers (2022-03-29T01:40:26Z) - Flip Learning: Erase to Segment [65.84901344260277]
Weakly-supervised segmentation (WSS) can help reduce time-consuming and cumbersome manual annotation.
We propose a novel and general WSS framework called Flip Learning, which only needs the box annotation.
Our proposed approach achieves competitive performance and shows great potential to narrow the gap between fully-supervised and weakly-supervised learning.
arXiv Detail & Related papers (2021-08-02T09:56:10Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
We propose a simple yet effective semi-supervised learning framework for semantic segmentation.
A set of simple design and training techniques can collectively improve the performance of semi-supervised semantic segmentation significantly.
Our method achieves state-of-the-art results in the semi-supervised settings on the Cityscapes and Pascal VOC datasets.
arXiv Detail & Related papers (2021-04-15T06:01:39Z) - Boosting Semi-supervised Image Segmentation with Global and Local Mutual
Information Regularization [9.994508738317585]
We present a novel semi-supervised segmentation method that leverages mutual information (MI) on categorical distributions.
We evaluate the method on three challenging publicly-available datasets for medical image segmentation.
arXiv Detail & Related papers (2021-03-08T15:13:25Z) - ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised
Learning [4.205692673448206]
We propose a novel data augmentation mechanism called ClassMix, which generates augmentations by mixing unlabelled samples.
We evaluate this augmentation technique on two common semi-supervised semantic segmentation benchmarks, showing that it attains state-of-the-art results.
arXiv Detail & Related papers (2020-07-15T18:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.