SegMatch: A semi-supervised learning method for surgical instrument segmentation
- URL: http://arxiv.org/abs/2308.05232v2
- Date: Wed, 21 May 2025 22:37:07 GMT
- Title: SegMatch: A semi-supervised learning method for surgical instrument segmentation
- Authors: Meng Wei, Charlie Budd, Luis C. Garcia-Peraza-Herrera, Reuben Dorent, Miaojing Shi, Tom Vercauteren,
- Abstract summary: We propose SegMatch, a semi-supervised learning method to reduce the need for expensive annotation for laparoscopic and robotic surgical images.<n>SegMatch builds on FixMatch, a widespread semi-supervised classification pipeline combining consistency regularization and pseudo-labelling.<n>Our results show that SegMatch outperforms fully-supervised approaches by incorporating unlabelled data.
- Score: 11.72367272074871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surgical instrument segmentation is recognised as a key enabler in providing advanced surgical assistance and improving computer-assisted interventions. In this work, we propose SegMatch, a semi-supervised learning method to reduce the need for expensive annotation for laparoscopic and robotic surgical images. SegMatch builds on FixMatch, a widespread semi supervised classification pipeline combining consistency regularization and pseudo-labelling, and adapts it for the purpose of segmentation. In our proposed SegMatch, the unlabelled images are first weakly augmented and fed to the segmentation model to generate pseudo-labels. In parallel, images are fed to a strong augmentation branch and consistency between the branches is used as an unsupervised loss. To increase the relevance of our strong augmentations, we depart from using only handcrafted augmentations and introduce a trainable adversarial augmentation strategy. Our FixMatch adaptation for segmentation tasks further includes carefully considering the equivariance and invariance properties of the augmentation functions we rely on. For binary segmentation tasks, our algorithm was evaluated on the MICCAI Instrument Segmentation Challenge datasets, Robust-MIS 2019 and EndoVis 2017. For multi-class segmentation tasks, we relied on the recent CholecInstanceSeg dataset. Our results show that SegMatch outperforms fully-supervised approaches by incorporating unlabelled data, and surpasses a range of state-of-the-art semi-supervised models across different labelled to unlabelled data ratios.
Related papers
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - Unsupervised Universal Image Segmentation [59.0383635597103]
We propose an Unsupervised Universal model (U2Seg) adept at performing various image segmentation tasks.
U2Seg generates pseudo semantic labels for these segmentation tasks via leveraging self-supervised models.
We then self-train the model on these pseudo semantic labels, yielding substantial performance gains.
arXiv Detail & Related papers (2023-12-28T18:59:04Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Dense FixMatch: a simple semi-supervised learning method for pixel-wise
prediction tasks [68.36996813591425]
We propose Dense FixMatch, a simple method for online semi-supervised learning of dense and structured prediction tasks.
We enable the application of FixMatch in semi-supervised learning problems beyond image classification by adding a matching operation on the pseudo-labels.
Dense FixMatch significantly improves results compared to supervised learning using only labeled data, approaching its performance with 1/4 of the labeled samples.
arXiv Detail & Related papers (2022-10-18T15:02:51Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Instance Segmentation of Unlabeled Modalities via Cyclic Segmentation
GAN [27.936725483892076]
We propose a novel Cyclic Generative Adrial Network (CySGAN) that conducts image translation and instance segmentation jointly.
We benchmark our approach on the task of 3D neuronal nuclei segmentation with annotated electron microscopy (EM) images and unlabeled expansion microscopy (ExM) data.
arXiv Detail & Related papers (2022-04-06T20:46:39Z) - Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation [0.0]
We propose a semi-supervised segmentation network based on contrastive learning.
In contrast to the previous state-of-the-art, we introduce a contrastive learning form of dual-view training.
Our proposed method outperforms state-of-the-art semi-supervised and fully supervised segmentation algorithms consistently.
arXiv Detail & Related papers (2022-03-29T01:40:26Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
We propose TraSeTR, a Track-to-Segment Transformer that exploits tracking cues to assist surgical instrument segmentation.
TraSeTR jointly reasons about the instrument type, location, and identity with instance-level predictions.
The effectiveness of our method is demonstrated with state-of-the-art instrument type segmentation results on three public datasets.
arXiv Detail & Related papers (2022-02-17T05:52:18Z) - Flip Learning: Erase to Segment [65.84901344260277]
Weakly-supervised segmentation (WSS) can help reduce time-consuming and cumbersome manual annotation.
We propose a novel and general WSS framework called Flip Learning, which only needs the box annotation.
Our proposed approach achieves competitive performance and shows great potential to narrow the gap between fully-supervised and weakly-supervised learning.
arXiv Detail & Related papers (2021-08-02T09:56:10Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
We propose a simple yet effective semi-supervised learning framework for semantic segmentation.
A set of simple design and training techniques can collectively improve the performance of semi-supervised semantic segmentation significantly.
Our method achieves state-of-the-art results in the semi-supervised settings on the Cityscapes and Pascal VOC datasets.
arXiv Detail & Related papers (2021-04-15T06:01:39Z) - Boosting Semi-supervised Image Segmentation with Global and Local Mutual
Information Regularization [9.994508738317585]
We present a novel semi-supervised segmentation method that leverages mutual information (MI) on categorical distributions.
We evaluate the method on three challenging publicly-available datasets for medical image segmentation.
arXiv Detail & Related papers (2021-03-08T15:13:25Z) - ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised
Learning [4.205692673448206]
We propose a novel data augmentation mechanism called ClassMix, which generates augmentations by mixing unlabelled samples.
We evaluate this augmentation technique on two common semi-supervised semantic segmentation benchmarks, showing that it attains state-of-the-art results.
arXiv Detail & Related papers (2020-07-15T18:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.