Masked Diffusion as Self-supervised Representation Learner
- URL: http://arxiv.org/abs/2308.05695v4
- Date: Fri, 12 Apr 2024 21:11:16 GMT
- Title: Masked Diffusion as Self-supervised Representation Learner
- Authors: Zixuan Pan, Jianxu Chen, Yiyu Shi,
- Abstract summary: Masked diffusion model (MDM) is a scalable self-supervised representation learner for semantic segmentation.
This paper decomposes the interrelation between the generative capability and representation learning ability inherent in diffusion models.
- Score: 5.449210269462304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising diffusion probabilistic models have recently demonstrated state-of-the-art generative performance and have been used as strong pixel-level representation learners. This paper decomposes the interrelation between the generative capability and representation learning ability inherent in diffusion models. We present the masked diffusion model (MDM), a scalable self-supervised representation learner for semantic segmentation, substituting the conventional additive Gaussian noise of traditional diffusion with a masking mechanism. Our proposed approach convincingly surpasses prior benchmarks, demonstrating remarkable advancements in both medical and natural image semantic segmentation tasks, particularly in few-shot scenarios.
Related papers
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - Enhancing Label-efficient Medical Image Segmentation with Text-guided Diffusion Models [5.865983529245793]
TextDiff improves semantic representation through inexpensive medical text annotations.
We show that TextDiff is significantly superior to the state-of-the-art multi-modal segmentation methods with only a few training samples.
arXiv Detail & Related papers (2024-07-07T10:21:08Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
We propose a simple yet effective framework comprising a pre-trained Stable Diffusion (SD) model containing rich generative priors, a unified head (U-head) capable of integrating hierarchical representations, and an adapted expert providing discriminative priors.
Comprehensive investigations unveil potential characteristics of Vermouth, such as varying granularity of perception concealed in latent variables at distinct time steps and various U-net stages.
The promising results demonstrate the potential of diffusion models as formidable learners, establishing their significance in furnishing informative and robust visual representations.
arXiv Detail & Related papers (2024-01-29T10:36:57Z) - Surf-CDM: Score-Based Surface Cold-Diffusion Model For Medical Image
Segmentation [15.275335829889086]
We propose a conditional score-based generative modeling framework for medical image segmentation.
We evaluate our method on the segmentation of the left ventricle from 65 transthoracic echocardiogram videos.
Our proposed model not only outperformed the compared methods in terms of segmentation accuracy, but also showed potential in estimating segmentation uncertainties.
arXiv Detail & Related papers (2023-12-19T22:50:02Z) - Conditional Diffusion Models for Weakly Supervised Medical Image
Segmentation [18.956306942099097]
Conditional diffusion models (CDM) is capable of generating images subject to specific distributions.
We utilize category-aware semantic information underlied in CDM to get the prediction mask of the target object.
Our method outperforms state-of-the-art CAM and diffusion model methods on two public medical image segmentation datasets.
arXiv Detail & Related papers (2023-06-06T17:29:26Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
We propose to ameliorate the semantic segmentation quality of existing discriminative approaches with a mask prior modeled by a denoising diffusion generative model.
We evaluate the proposed prior modeling with several off-the-shelf segmentors, and our experimental results on ADE20K and Cityscapes demonstrate that our approach could achieve competitively quantitative performance.
arXiv Detail & Related papers (2023-06-02T17:47:01Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
We show that density estimates from large-scale text-to-image diffusion models can be leveraged to perform zero-shot classification.
Our generative approach to classification attains strong results on a variety of benchmarks.
Our results are a step toward using generative over discriminative models for downstream tasks.
arXiv Detail & Related papers (2023-03-28T17:59:56Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - Label-Efficient Semantic Segmentation with Diffusion Models [27.01899943738203]
We demonstrate that diffusion models can also serve as an instrument for semantic segmentation.
In particular, for several pretrained diffusion models, we investigate the intermediate activations from the networks that perform the Markov step of the reverse diffusion process.
We show that these activations effectively capture the semantic information from an input image and appear to be excellent pixel-level representations for the segmentation problem.
arXiv Detail & Related papers (2021-12-06T15:55:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.