MS3D++: Ensemble of Experts for Multi-Source Unsupervised Domain
Adaptation in 3D Object Detection
- URL: http://arxiv.org/abs/2308.05988v2
- Date: Mon, 4 Sep 2023 05:33:42 GMT
- Title: MS3D++: Ensemble of Experts for Multi-Source Unsupervised Domain
Adaptation in 3D Object Detection
- Authors: Darren Tsai, Julie Stephany Berrio, Mao Shan, Eduardo Nebot and
Stewart Worrall
- Abstract summary: Deploying 3D detectors in unfamiliar domains has been demonstrated to result in a significant 70-90% drop in detection rate.
We introduce MS3D++, a self-training framework for multi-source unsupervised domain adaptation in 3D object detection.
MS3D++ generates high-quality pseudo-labels, allowing 3D detectors to achieve high performance on a range of lidar types.
- Score: 12.005805403222354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying 3D detectors in unfamiliar domains has been demonstrated to result
in a significant 70-90% drop in detection rate due to variations in lidar,
geography, or weather from their training dataset. This domain gap leads to
missing detections for densely observed objects, misaligned confidence scores,
and increased high-confidence false positives, rendering the detector highly
unreliable. To address this, we introduce MS3D++, a self-training framework for
multi-source unsupervised domain adaptation in 3D object detection. MS3D++
generates high-quality pseudo-labels, allowing 3D detectors to achieve high
performance on a range of lidar types, regardless of their density. Our
approach effectively fuses predictions of an ensemble of multi-frame
pre-trained detectors from different source domains to improve domain
generalization. We subsequently refine predictions temporally to ensure
temporal consistency in box localization and object classification.
Furthermore, we present an in-depth study into the performance and
idiosyncrasies of various 3D detector components in a cross-domain context,
providing valuable insights for improved cross-domain detector ensembling.
Experimental results on Waymo, nuScenes and Lyft demonstrate that detectors
trained with MS3D++ pseudo-labels achieve state-of-the-art performance,
comparable to training with human-annotated labels in Bird's Eye View (BEV)
evaluation for both low and high density lidar. Code is available at
https://github.com/darrenjkt/MS3D
Related papers
- 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
We propose a novel approach called SOGDet (Semantic-Occupancy Guided Multi-view 3D Object Detection) to improve the accuracy of 3D object detection.
Our results show that SOGDet consistently enhance the performance of three baseline methods in terms of nuScenes Detection Score (NDS) and mean Average Precision (mAP)
This indicates that the combination of 3D object detection and 3D semantic occupancy leads to a more comprehensive perception of the 3D environment, thereby aiding build more robust autonomous driving systems.
arXiv Detail & Related papers (2023-08-26T07:38:21Z) - FocalFormer3D : Focusing on Hard Instance for 3D Object Detection [97.56185033488168]
False negatives (FN) in 3D object detection can lead to potentially dangerous situations in autonomous driving.
In this work, we propose Hard Instance Probing (HIP), a general pipeline that identifies textitFN in a multi-stage manner.
We instantiate this method as FocalFormer3D, a simple yet effective detector that excels at excavating difficult objects.
arXiv Detail & Related papers (2023-08-08T20:06:12Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
3D object detection from point clouds is crucial in safety-critical autonomous driving.
We propose a density-insensitive domain adaption framework to address the density-induced domain gap.
Experimental results on three widely adopted 3D object detection datasets demonstrate that our proposed domain adaption method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-04-19T06:33:07Z) - MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation
in 3D Object Detection [7.489722641968593]
Multi-Source 3D (MS3D) is a new self-training pipeline for unsupervised domain adaptation in 3D object detection.
Our proposed Kernel-Density Estimation (KDE) Box Fusion method fuses box proposals from multiple domains to obtain pseudo-labels.
MS3D exhibits greater robustness to domain shift and produces accurate pseudo-labels over greater distances.
arXiv Detail & Related papers (2023-04-05T13:29:21Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
We present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D)
SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage.
Experiments show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label.
arXiv Detail & Related papers (2022-12-06T09:32:44Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
We present a self-training method, named ST3D++, with a holistic pseudo label denoising pipeline for unsupervised domain adaptation on 3D object detection.
We equip the pseudo label generation process with a hybrid quality-aware triplet memory to improve the quality and stability of generated pseudo labels.
In the model training stage, we propose a source data assisted training strategy and a curriculum data augmentation policy.
arXiv Detail & Related papers (2021-08-15T07:49:06Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.