UAMM: Price-oracle based Automated Market Maker
- URL: http://arxiv.org/abs/2308.06375v2
- Date: Sun, 25 Aug 2024 18:04:21 GMT
- Title: UAMM: Price-oracle based Automated Market Maker
- Authors: Daniel Jiwoong Im, Alexander Kondratskiy, Vincent Harvey, Hsuan-Wei Fu,
- Abstract summary: We propose a new approach known as UBET AMM, which calculates prices by considering external market prices and the impermanent loss of the liquidity pool.
We demonstrate that our approach eliminates arbitrage opportunities when external market prices are efficient.
- Score: 42.32743590150279
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Automated market makers (AMMs) are pricing mechanisms utilized by decentralized exchanges (DEX). Traditional AMM approaches are constrained by pricing solely based on their own liquidity pool, without consideration of external markets or risk management for liquidity providers. In this paper, we propose a new approach known as UBET AMM (UAMM), which calculates prices by considering external market prices and the impermanent loss of the liquidity pool. Despite relying on external market prices, our method maintains the desired properties of a constant product curve when computing slippages. The key element of UAMM is determining the appropriate slippage amount based on the desired target balance, which encourages the liquidity pool to minimize impermanent loss. We demonstrate that our approach eliminates arbitrage opportunities when external market prices are efficient.
Related papers
- RediSwap: MEV Redistribution Mechanism for CFMMs [6.475701705193783]
We introduce RediSwap, a novel AMM designed to capture Maximal Extractable Value (MEV) at the application level and refund it fairly among users and liquidity providers.
At its core, RediSwap features an MEV-redistribution mechanism that manages arbitrage opportunities within the AMM pool.
We prove that our mechanism is incentive-compatible and Sybil-proof, and demonstrate that it is easy for arbitrageurs to participate.
arXiv Detail & Related papers (2024-10-24T05:11:41Z) - ZeroSwap: Data-driven Optimal Market Making in DeFi [23.671367118750872]
Automated Market Makers (AMMs) are major centers of matching liquidity supply and demand in Decentralized Finance.
We propose the first optimal Bayesian and the first model-free data-driven algorithm to optimally track the external price of the asset.
arXiv Detail & Related papers (2023-10-13T21:28:19Z) - Adaptive Liquidity Provision in Uniswap V3 with Deep Reinforcement
Learning [19.916721360624997]
Decentralized exchanges (DEXs) are a cornerstone of decentralized finance (DeFi)
This paper introduces a deep reinforcement learning (DRL) solution designed to adaptively adjust price ranges.
Our approach also neutralizes price-change risks by hedging the liquidity position through a rebalancing portfolio.
arXiv Detail & Related papers (2023-09-18T20:10:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Onchain Sports Betting using UBET Automated Market Maker [45.410818354926406]
Decentralized sports betting requires automated market makers (AMMs) for efficient liquidity provision.
Existing AMMs like Uniswap lack alignment with fair odds, creating risks for liquidity providers.
The paper introduces UBET AMM (UAMM), utilizing smart contracts and algorithms to price sports odds fairly.
arXiv Detail & Related papers (2023-08-18T02:19:30Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
Decentralized Exchanges (DEXs) are new types of marketplaces leveraging technology.
One such DEX, Uniswap v3, allows liquidity providers to allocate funds more efficiently by specifying an active price interval for their funds.
This introduces the problem of finding an optimal strategy for choosing price intervals.
We formalize this problem as an online learning problem with non-stochastic rewards.
arXiv Detail & Related papers (2023-02-01T17:21:40Z) - Predictive Crypto-Asset Automated Market Making Architecture for
Decentralized Finance using Deep Reinforcement Learning [0.0]
The study proposes a quote-driven predictive automated market maker (AMM) platform with on-chain custody and settlement functions.
The proposed architecture is an augmentation to the Uniswap V3, a cryptocurrency AMM protocol, by utilizing a novel market equilibrium pricing for reduced divergence and slippage loss.
arXiv Detail & Related papers (2022-09-28T01:13:22Z) - Delta Hedging Liquidity Positions on Automated Market Makers [5.122487534787007]
Liquidity Providers on Automated Market Makers generate millions of USD in transaction fees daily.
The net value of a Liquidity Position is vulnerable to price changes in the underlying assets in the pool.
We propose a new metric to measure Liquidity Position PNL based on price movement from the underlying assets.
arXiv Detail & Related papers (2022-08-04T19:30:26Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.