DCNFIS: Deep Convolutional Neuro-Fuzzy Inference System
- URL: http://arxiv.org/abs/2308.06378v3
- Date: Sun, 17 Mar 2024 14:10:15 GMT
- Title: DCNFIS: Deep Convolutional Neuro-Fuzzy Inference System
- Authors: Mojtaba Yeganejou, Kimia Honari, Ryan Kluzinski, Scott Dick, Michael Lipsett, James Miller,
- Abstract summary: We report on the design of a new deep network that achieves improved transparency without sacrificing accuracy.
We design a deep convolutional neuro-fuzzy inference system (DCNFIS) by hybridizing fuzzy logic and deep learning models.
We exploit the transparency of fuzzy logic by deriving explanations, in the form of saliency maps, from the fuzzy rules encoded in the network.
- Score: 1.8802008255570541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key challenge in eXplainable Artificial Intelligence is the well-known tradeoff between the transparency of an algorithm (i.e., how easily a human can directly understand the algorithm, as opposed to receiving a post-hoc explanation), and its accuracy. We report on the design of a new deep network that achieves improved transparency without sacrificing accuracy. We design a deep convolutional neuro-fuzzy inference system (DCNFIS) by hybridizing fuzzy logic and deep learning models and show that DCNFIS performs as accurately as existing convolutional neural networks on four well-known datasets and 3 famous architectures. Our performance comparison with available fuzzy methods show that DCNFIS is now state-of-the-art fuzzy system and outperforms other shallow and deep fuzzy methods to the best of our knowledge. At the end, we exploit the transparency of fuzzy logic by deriving explanations, in the form of saliency maps, from the fuzzy rules encoded in the network to take benefit of fuzzy logic upon regular deep learning methods. We investigate the properties of these explanations in greater depth using the Fashion-MNIST dataset.
Related papers
- A Hierarchical Fused Quantum Fuzzy Neural Network for Image Classification [8.7057403071943]
We proposed a novel hierarchical fused quantum fuzzy neural network (HQFNN)
HQFNN uses quantum neural networks to learn fuzzy membership functions in fuzzy neural network.
Results show that the proposed model can outperform several existing methods.
arXiv Detail & Related papers (2024-03-14T12:09:36Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Information Flow in Deep Neural Networks [0.6922389632860545]
There is no comprehensive theoretical understanding of how deep neural networks work or are structured.
Deep networks are often seen as black boxes with unclear interpretations and reliability.
This work aims to apply principles and techniques from information theory to deep learning models to increase our theoretical understanding and design better algorithms.
arXiv Detail & Related papers (2022-02-10T23:32:26Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
Deep Feedback Control (DFC) is a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment.
The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of connectivity patterns.
To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing.
arXiv Detail & Related papers (2021-06-15T05:30:17Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Generalized Approach to Matched Filtering using Neural Networks [4.535489275919893]
We make a key observation on the relationship between the emerging deep learning and the traditional techniques.
matched filtering is formally equivalent to a particular neural network.
We show that the proposed neural network architecture can outperform matched filtering.
arXiv Detail & Related papers (2021-04-08T17:59:07Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Layerwise Knowledge Extraction from Deep Convolutional Networks [0.9137554315375922]
We propose a novel layerwise knowledge extraction method using M-of-N rules.
We show that this approach produces rules close to an optimal complexity-error tradeoff.
We also find that the softmax layer in Convolutional Neural Networks and Autoencoders is highly explainable by rule extraction.
arXiv Detail & Related papers (2020-03-19T19:46:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.