Learning on Graphs with Out-of-Distribution Nodes
- URL: http://arxiv.org/abs/2308.06714v1
- Date: Sun, 13 Aug 2023 08:10:23 GMT
- Title: Learning on Graphs with Out-of-Distribution Nodes
- Authors: Yu Song and Donglin Wang
- Abstract summary: Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs.
This work defines the problem of graph learning with out-of-distribution nodes.
We propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes.
- Score: 33.141867473074264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are state-of-the-art models for performing
prediction tasks on graphs. While existing GNNs have shown great performance on
various tasks related to graphs, little attention has been paid to the scenario
where out-of-distribution (OOD) nodes exist in the graph during training and
inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes
with labels unseen from the training set. Since a lot of networks are
automatically constructed by programs, real-world graphs are often noisy and
may contain nodes from unknown distributions. In this work, we define the
problem of graph learning with out-of-distribution nodes. Specifically, we aim
to accomplish two tasks: 1) detect nodes which do not belong to the known
distribution and 2) classify the remaining nodes to be one of the known
classes. We demonstrate that the connection patterns in graphs are informative
for outlier detection, and propose Out-of-Distribution Graph Attention Network
(OODGAT), a novel GNN model which explicitly models the interaction between
different kinds of nodes and separate inliers from outliers during feature
propagation. Extensive experiments show that OODGAT outperforms existing
outlier detection methods by a large margin, while being better or comparable
in terms of in-distribution classification.
Related papers
- GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains.
Recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN.
This paper introduces a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture.
arXiv Detail & Related papers (2024-01-10T08:37:39Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - GraFN: Semi-Supervised Node Classification on Graph with Few Labels via
Non-Parametric Distribution Assignment [5.879936787990759]
We propose a novel semi-supervised method for graphs, GraFN, to ensure nodes that belong to the same class to be grouped together.
GraFN randomly samples support nodes from labeled nodes and anchor nodes from the entire graph.
We experimentally show that GraFN surpasses both the semi-supervised and self-supervised methods in terms of node classification on real-world graphs.
arXiv Detail & Related papers (2022-04-04T08:22:30Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
Graph representation learning methods generate numerical vector representations for the nodes in a network.
In this work, we propose Inferential SIR-GN, a model which is pre-trained on random graphs, then computes node representations rapidly.
We demonstrate that the model is able to capture node's structural role information, and show excellent performance at node and graph classification tasks, on unseen networks.
arXiv Detail & Related papers (2021-11-08T20:56:37Z) - Label Propagation across Graphs: Node Classification using Graph Neural
Tangent Kernels [12.445026956430826]
Graph neural networks (GNNs) have achieved superior performance on node classification tasks.
Our work considers a challenging inductive setting where a set of labeled graphs are available for training while the unlabeled target graph is completely separate.
Under the implicit assumption that the testing and training graphs come from similar distributions, our goal is to develop a labeling function that generalizes to unobserved connectivity structures.
arXiv Detail & Related papers (2021-10-07T19:42:35Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.