Revocable Anonymous Credentials from Attribute-Based Encryption
- URL: http://arxiv.org/abs/2308.06797v4
- Date: Thu, 12 Dec 2024 12:19:23 GMT
- Title: Revocable Anonymous Credentials from Attribute-Based Encryption
- Authors: Giovanni Bartolomeo,
- Abstract summary: We introduce a credential verification protocol leveraging on Ciphertext-Policy Attribute-Based Encryption.<n>The protocol supports anonymous proof of predicates and revocation through accumulators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a credential verification protocol leveraging on Ciphertext-Policy Attribute-Based Encryption. The protocol supports anonymous proof of predicates and revocation through accumulators.
Related papers
- Cryptis: Cryptographic Reasoning in Separation Logic [6.965792280784777]
We introduce Cryptis, an extension of the Iris separation logic that can be used to verify cryptographic components using the symbolic model of cryptography.
The combination of separation logic and cryptographic reasoning allows us to prove the correctness of a protocol and later reuse this result to verify larger systems that rely on the protocol.
arXiv Detail & Related papers (2025-02-28T15:33:37Z) - CipherGuard: Compiler-aided Mitigation against Ciphertext Side-channel Attacks [30.992038220253797]
CipherGuard is a compiler-aided mitigation methodology to counteract ciphertext side channels with high efficiency and security.
We demonstrate that CipherGuard can strengthen the security of various cryptographic implementations more efficiently than existing state-of-the-art defense mechanism, i.e., CipherFix.
arXiv Detail & Related papers (2025-02-19T03:22:36Z) - Provisioning Time-Based Subscription in NDN: A Secure and Efficient Access Control Scheme [21.55750158120826]
This paper proposes a novel encryption-based access control mechanism for Named Data Networking (NDN)
The scheme allows data producers to share their content in encrypted form before transmitting it to consumers.
It incorporates time-based subscription access policies directly into the encrypted content, enabling only consumers with valid subscriptions to decrypt it.
arXiv Detail & Related papers (2025-01-27T11:44:36Z) - Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
This paper explores the feasibility of applying homomorphic encryption to SemCom.
We propose a task-oriented SemCom scheme secured through homomorphic encryption.
arXiv Detail & Related papers (2025-01-17T13:26:14Z) - Formal Verification of Permission Voucher [1.4732811715354452]
The Permission Voucher Protocol is a system designed for secure and authenticated access control in distributed environments.
The analysis employs the Tamarin Prover, a state-of-the-art tool for symbolic verification, to evaluate key security properties.
Results confirm the protocol's robustness against common attacks such as message tampering, impersonation, and replay.
arXiv Detail & Related papers (2024-12-18T14:11:50Z) - Quantum Authenticated Key Expansion with Key Recycling [1.274819629555637]
We present a quantum authentication key expansion protocol that integrates both authentication and key expansion within a single protocol.
We analyse the security of the protocol in a QAKE framework adapted from a classical authentication key exchange framework.
arXiv Detail & Related papers (2024-09-25T01:29:13Z) - Simultaneous quantum identity authentication scheme utilizing entanglement swapping with secret key preservation [0.0]
We introduce a new protocol for quantum identity authentication (QIA)
Our proposed scheme facilitates simultaneous authentication between two users, Alice and Bob, leveraging Bell states with the assistance of a third party, Charlie.
We demonstrate that the proposed protocol withstands various known attacks, including impersonation, intercept and resend and impersonated fraudulent attacks.
arXiv Detail & Related papers (2024-05-23T18:40:15Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - CodeChameleon: Personalized Encryption Framework for Jailbreaking Large
Language Models [49.60006012946767]
We propose CodeChameleon, a novel jailbreak framework based on personalized encryption tactics.
We conduct extensive experiments on 7 Large Language Models, achieving state-of-the-art average Attack Success Rate (ASR)
Remarkably, our method achieves an 86.6% ASR on GPT-4-1106.
arXiv Detail & Related papers (2024-02-26T16:35:59Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - On Cryptographic Mechanisms for the Selective Disclosure of Verifiable Credentials [39.4080639822574]
Verifiable credentials are a digital analogue of physical credentials.
They can be presented to verifiers to reveal attributes or even predicates about the attributes included in the credential.
One way to preserve privacy during presentation consists in selectively disclosing the attributes in a credential.
arXiv Detail & Related papers (2024-01-16T08:22:28Z) - Ejafa_protocol: A custom INC secure protocol [0.0]
The protocol incorporates modern cryptographic primitives, including X25519 for key exchange and ChaCha20 for encryption.
A key feature of the protocol is its adaptability to resource-constrained environments without compromising on security.
arXiv Detail & Related papers (2024-01-05T12:51:19Z) - A Security Verification Framework of Cryptographic Protocols Using
Machine Learning [0.0]
We propose a security verification framework for cryptographic protocols using machine learning.
We create arbitrarily large datasets by automatically generating random protocols and assigning security labels to them.
We evaluate the proposed method by applying it to verification of practical cryptographic protocols.
arXiv Detail & Related papers (2023-04-26T02:37:43Z) - RiDDLE: Reversible and Diversified De-identification with Latent
Encryptor [57.66174700276893]
This work presents RiDDLE, short for Reversible and Diversified De-identification with Latent Encryptor.
Built upon a pre-learned StyleGAN2 generator, RiDDLE manages to encrypt and decrypt the facial identity within the latent space.
arXiv Detail & Related papers (2023-03-09T11:03:52Z) - Byzantine-Robust Federated Learning with Optimal Statistical Rates and
Privacy Guarantees [123.0401978870009]
We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates.
We benchmark against competing protocols and show the empirical superiority of the proposed protocols.
Our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server.
arXiv Detail & Related papers (2022-05-24T04:03:07Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Quantum Secure Direct Communication with Mutual Authentication using a
Single Basis [2.9542356825059715]
We propose a new theoretical scheme for quantum secure direct communication (QSDC) with user authentication.
The present protocol uses only one orthogonal basis of single-qubit states to encode the secret message.
We discuss the security of the proposed protocol against some common attacks and show that no eaves-dropper can get any information from the quantum and classical channels.
arXiv Detail & Related papers (2021-01-10T16:32:42Z) - Breaking certified defenses: Semantic adversarial examples with spoofed
robustness certificates [57.52763961195292]
We present a new attack that exploits not only the labelling function of a classifier, but also the certificate generator.
The proposed method applies large perturbations that place images far from a class boundary while maintaining the imperceptibility property of adversarial examples.
arXiv Detail & Related papers (2020-03-19T17:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.