Optimizing Offensive Gameplan in the National Basketball Association
with Machine Learning
- URL: http://arxiv.org/abs/2308.06851v2
- Date: Wed, 13 Sep 2023 16:21:31 GMT
- Title: Optimizing Offensive Gameplan in the National Basketball Association
with Machine Learning
- Authors: Eamon Mukhopadhyay
- Abstract summary: ORTG (Offensive Rating) was developed by Dean Oliver.
In this paper, the statistic ORTG was found to have a correlation with different NBA playtypes.
Using the accuracy of the models as a justification, the next step was to optimize the output of the model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Throughout the analytical revolution that has occurred in the NBA, the
development of specific metrics and formulas has given teams, coaches, and
players a new way to see the game. However - the question arises - how can we
verify any metrics? One method would simply be eyeball approximation (trying
out many different gameplans) and/or trial and error - an estimation-based and
costly approach. Another approach is to try to model already existing metrics
with a unique set of features using machine learning techniques. The key to
this approach is that with these features that are selected, we can try to
gauge the effectiveness of these features combined, rather than using
individual analysis in simple metric evaluation. If we have an accurate model,
it can particularly help us determine the specifics of gameplan execution. In
this paper, the statistic ORTG (Offensive Rating, developed by Dean Oliver) was
found to have a correlation with different NBA playtypes using both a linear
regression model and a neural network regression model, although ultimately, a
neural network worked slightly better than linear regression. Using the
accuracy of the models as a justification, the next step was to optimize the
output of the model with test examples, which would demonstrate the combination
of features to best achieve a highly functioning offense.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - MUSO: Achieving Exact Machine Unlearning in Over-Parameterized Regimes [19.664090734076712]
Machine unlearning (MU) makes a well-trained model behave as if it had never been trained on specific data.
We propose an alternating optimization algorithm that unifies the tasks of unlearning and relabeling.
The algorithm's effectiveness, confirmed through numerical experiments, highlights its superior performance in unlearning across various scenarios.
arXiv Detail & Related papers (2024-10-11T06:17:17Z) - Harmony in Diversity: Merging Neural Networks with Canonical Correlation Analysis [17.989809995141044]
We propose CCA Merge, which is based on Corre Analysis Analysis.
We show that CCA works significantly better than past methods when more than 2 models are merged.
arXiv Detail & Related papers (2024-07-07T14:21:04Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Oracle Inequalities for Model Selection in Offline Reinforcement
Learning [105.74139523696284]
We study the problem of model selection in offline RL with value function approximation.
We propose the first model selection algorithm for offline RL that achieves minimax rate-optimal inequalities up to logarithmic factors.
We conclude with several numerical simulations showing it is capable of reliably selecting a good model class.
arXiv Detail & Related papers (2022-11-03T17:32:34Z) - Optimally Weighted Ensembles of Regression Models: Exact Weight
Optimization and Applications [0.0]
We show that combining different regression models can yield better results than selecting a single ('best') regression model.
We outline an efficient method that obtains optimally weighted linear combination from a heterogeneous set of regression models.
arXiv Detail & Related papers (2022-06-22T09:11:14Z) - Surprises in adversarially-trained linear regression [12.33259114006129]
Adversarial training is one of the most effective approaches to defend against such examples.
We show that for linear regression problems, adversarial training can be formulated as a convex problem.
We show that for sufficiently many features or sufficiently small regularization parameters, the learned model perfectly interpolates the training data.
arXiv Detail & Related papers (2022-05-25T11:54:42Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions.
We investigate methods for aggregating any number of conditional quantile models.
All of the models we consider in this paper can be fit using modern deep learning toolkits.
arXiv Detail & Related papers (2021-02-26T23:21:16Z) - Learning the Stein Discrepancy for Training and Evaluating Energy-Based
Models without Sampling [30.406623987492726]
We present a new method for evaluating and training unnormalized density models.
We estimate the Stein discrepancy between the data density $p(x)$ and the model density $q(x)$ defined by a vector function of the data.
This yields a novel goodness-of-fit test which outperforms existing methods on high dimensional data.
arXiv Detail & Related papers (2020-02-13T16:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.