A One Stop 3D Target Reconstruction and multilevel Segmentation Method
- URL: http://arxiv.org/abs/2308.06974v1
- Date: Mon, 14 Aug 2023 07:12:31 GMT
- Title: A One Stop 3D Target Reconstruction and multilevel Segmentation Method
- Authors: Jiexiong Xu, Weikun Zhao, Zhiyan Tang and Xiangchao Gan
- Abstract summary: We propose an open-source one stop 3D target reconstruction and multilevel segmentation framework (OSTRA)
OSTRA performs segmentation on 2D images, tracks multiple instances with segmentation labels in the image sequence, and then reconstructs labelled 3D objects or multiple parts with Multi-View Stereo (MVS) or RGBD-based 3D reconstruction methods.
Our method opens up a new avenue for reconstructing 3D targets embedded with rich multi-scale segmentation information in complex scenes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D object reconstruction and multilevel segmentation are fundamental to
computer vision research. Existing algorithms usually perform 3D scene
reconstruction and target objects segmentation independently, and the
performance is not fully guaranteed due to the challenge of the 3D
segmentation. Here we propose an open-source one stop 3D target reconstruction
and multilevel segmentation framework (OSTRA), which performs segmentation on
2D images, tracks multiple instances with segmentation labels in the image
sequence, and then reconstructs labelled 3D objects or multiple parts with
Multi-View Stereo (MVS) or RGBD-based 3D reconstruction methods. We extend
object tracking and 3D reconstruction algorithms to support continuous
segmentation labels to leverage the advances in the 2D image segmentation,
especially the Segment-Anything Model (SAM) which uses the pretrained neural
network without additional training for new scenes, for 3D object segmentation.
OSTRA supports most popular 3D object models including point cloud, mesh and
voxel, and achieves high performance for semantic segmentation, instance
segmentation and part segmentation on several 3D datasets. It even surpasses
the manual segmentation in scenes with complex structures and occlusions. Our
method opens up a new avenue for reconstructing 3D targets embedded with rich
multi-scale segmentation information in complex scenes. OSTRA is available from
https://github.com/ganlab/OSTRA.
Related papers
- PartGen: Part-level 3D Generation and Reconstruction with Multi-View Diffusion Models [63.1432721793683]
We introduce PartGen, a novel approach that generates 3D objects composed of meaningful parts starting from text, an image, or an unstructured 3D object.
We evaluate our method on generated and real 3D assets and show that it outperforms segmentation and part-extraction baselines by a large margin.
arXiv Detail & Related papers (2024-12-24T18:59:43Z) - 3D Part Segmentation via Geometric Aggregation of 2D Visual Features [57.20161517451834]
Supervised 3D part segmentation models are tailored for a fixed set of objects and parts, limiting their transferability to open-set, real-world scenarios.
Recent works have explored vision-language models (VLMs) as a promising alternative, using multi-view rendering and textual prompting to identify object parts.
To address these limitations, we propose COPS, a COmprehensive model for Parts that blends semantics extracted from visual concepts and 3D geometry to effectively identify object parts.
arXiv Detail & Related papers (2024-12-05T15:27:58Z) - SAMPart3D: Segment Any Part in 3D Objects [23.97392239910013]
3D part segmentation is a crucial and challenging task in 3D perception, playing a vital role in applications such as robotics, 3D generation, and 3D editing.
Recent methods harness the powerful Vision Language Models (VLMs) for 2D-to-3D knowledge distillation, achieving zero-shot 3D part segmentation.
In this work, we introduce SAMPart3D, a scalable zero-shot 3D part segmentation framework that segments any 3D object into semantic parts at multiple granularities.
arXiv Detail & Related papers (2024-11-11T17:59:10Z) - 3D-GRES: Generalized 3D Referring Expression Segmentation [77.10044505645064]
3D Referring Expression (3D-RES) is dedicated to segmenting a specific instance within a 3D space based on a natural language description.
Generalized 3D Referring Expression (3D-GRES) extends the capability to segment any number of instances based on natural language instructions.
arXiv Detail & Related papers (2024-07-30T08:59:05Z) - 3x2: 3D Object Part Segmentation by 2D Semantic Correspondences [33.99493183183571]
We propose to leverage a few annotated 3D shapes or richly annotated 2D datasets to perform 3D object part segmentation.
We present our novel approach, termed 3-By-2 that achieves SOTA performance on different benchmarks with various granularity levels.
arXiv Detail & Related papers (2024-07-12T19:08:00Z) - Part123: Part-aware 3D Reconstruction from a Single-view Image [54.589723979757515]
Part123 is a novel framework for part-aware 3D reconstruction from a single-view image.
We introduce contrastive learning into a neural rendering framework to learn a part-aware feature space.
A clustering-based algorithm is also developed to automatically derive 3D part segmentation results from the reconstructed models.
arXiv Detail & Related papers (2024-05-27T07:10:21Z) - SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
This paper addresses the challenge of 3D instance segmentation by simultaneously leveraging 3D geometric and multi-view image information.
We introduce a novel 3D-to-2D query framework to effectively exploit 2D segmentation models for 3D instance segmentation.
Our method achieves robust segmentation performance and can generalize across different types of scenes.
arXiv Detail & Related papers (2023-12-13T18:59:58Z) - ONeRF: Unsupervised 3D Object Segmentation from Multiple Views [59.445957699136564]
ONeRF is a method that automatically segments and reconstructs object instances in 3D from multi-view RGB images without any additional manual annotations.
The segmented 3D objects are represented using separate Neural Radiance Fields (NeRFs) which allow for various 3D scene editing and novel view rendering.
arXiv Detail & Related papers (2022-11-22T06:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.