Deep convolutional neural networks for cyclic sensor data
- URL: http://arxiv.org/abs/2308.06987v1
- Date: Mon, 14 Aug 2023 07:51:15 GMT
- Title: Deep convolutional neural networks for cyclic sensor data
- Authors: Payman Goodarzi, Yannick Robin, Andreas Sch\"utze, Tizian Schneider
- Abstract summary: This study focuses on sensor-based condition monitoring and explores the application of deep learning techniques.
Our investigation involves comparing the performance of three models: a baseline model employing conventional methods, a single CNN model with early sensor fusion, and a two-lane CNN model (2L-CNN) with late sensor fusion.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive maintenance plays a critical role in ensuring the uninterrupted
operation of industrial systems and mitigating the potential risks associated
with system failures. This study focuses on sensor-based condition monitoring
and explores the application of deep learning techniques using a hydraulic
system testbed dataset. Our investigation involves comparing the performance of
three models: a baseline model employing conventional methods, a single CNN
model with early sensor fusion, and a two-lane CNN model (2L-CNN) with late
sensor fusion. The baseline model achieves an impressive test error rate of 1%
by employing late sensor fusion, where feature extraction is performed
individually for each sensor. However, the CNN model encounters challenges due
to the diverse sensor characteristics, resulting in an error rate of 20.5%. To
further investigate this issue, we conduct separate training for each sensor
and observe variations in accuracy. Additionally, we evaluate the performance
of the 2L-CNN model, which demonstrates significant improvement by reducing the
error rate by 33% when considering the combination of the least and most
optimal sensors. This study underscores the importance of effectively
addressing the complexities posed by multi-sensor systems in sensor-based
condition monitoring.
Related papers
- MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
We introduce a new benchmark, the Multi-Sensor SIDD dataset, which is the first raw-domain dataset designed to evaluate the sensor transferability of denoising models.
We propose a sensor consistency training framework that enables denoising models to learn the sensor-invariant features.
arXiv Detail & Related papers (2024-11-18T13:32:59Z) - Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation [5.143097874851516]
We study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI)
We demonstrate that these methods effectively increase the robustness of model predictions to missing sensors.
We observe that ensemble multi-sensor models are the most robust to the lack of sensors.
arXiv Detail & Related papers (2024-07-22T09:58:29Z) - Machine Learning Based Compensation for Inconsistencies in Knitted Force
Sensors [1.0742675209112622]
Knitted sensors frequently suffer from inconsistencies due to innate effects such as offset, relaxation, and drift.
In this paper, we demonstrate a method for counteracting this by applying processing using a minimal artificial neural network (ANN)
By training a three-layer ANN with a total of 8 neurons, we manage to significantly improve the mapping between sensor reading and actuation force.
arXiv Detail & Related papers (2023-06-21T09:19:33Z) - Detection of Sensor-To-Sensor Variations using Explainable AI [2.2956649873563952]
chemi-resistive gas sensing devices are plagued by issues of sensor variations during manufacturing.
This study proposes a novel approach for detecting sensor-to-sensor variations in sensing devices using the explainable AI (XAI) method of SHapley Additive exPlanations (SHAP)
The methodology is tested using artificial and realistic Ozone concentration profiles to train a Gated Recurrent Unit (GRU) model.
arXiv Detail & Related papers (2023-06-19T11:00:54Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Hybrid Cloud-Edge Collaborative Data Anomaly Detection in Industrial
Sensor Networks [16.06269863500741]
This paper proposes a hybrid anomaly detection approach in cloud-edge collaboration industrial sensor networks.
The proposed approach can achieve an overall 11.19% increase in Recall and an impressive 14.29% improvement in F1-score.
arXiv Detail & Related papers (2022-04-21T08:03:22Z) - Learning Online Multi-Sensor Depth Fusion [100.84519175539378]
SenFuNet is a depth fusion approach that learns sensor-specific noise and outlier statistics.
We conduct experiments with various sensor combinations on the real-world CoRBS and Scene3D datasets.
arXiv Detail & Related papers (2022-04-07T10:45:32Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments.
Anomalies can come either from real changes in the environment (real drift) or from faulty sensory devices (virtual drift)
arXiv Detail & Related papers (2021-07-28T10:19:58Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.