A Local Iterative Approach for the Extraction of 2D Manifolds from
Strongly Curved and Folded Thin-Layer Structures
- URL: http://arxiv.org/abs/2308.07070v1
- Date: Mon, 14 Aug 2023 11:05:37 GMT
- Title: A Local Iterative Approach for the Extraction of 2D Manifolds from
Strongly Curved and Folded Thin-Layer Structures
- Authors: Nicolas Klenert, Verena Lepper, Daniel Baum
- Abstract summary: Ridge surfaces represent important features for the analysis of 3-dimensional (3D) datasets in diverse applications.
We develop a novel method to extract 2D manifold from noisy data.
We demonstrate the applicability and robustness of our method on both artificial data as well as real-world data including folded silver and papyrus sheets.
- Score: 1.4272411349249625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ridge surfaces represent important features for the analysis of 3-dimensional
(3D) datasets in diverse applications and are often derived from varying
underlying data including flow fields, geological fault data, and point data,
but they can also be present in the original scalar images acquired using a
plethora of imaging techniques. Our work is motivated by the analysis of image
data acquired using micro-computed tomography (Micro-CT) of ancient, rolled and
folded thin-layer structures such as papyrus, parchment, and paper as well as
silver and lead sheets. From these documents we know that they are
2-dimensional (2D) in nature. Hence, we are particularly interested in
reconstructing 2D manifolds that approximate the document's structure. The
image data from which we want to reconstruct the 2D manifolds are often very
noisy and represent folded, densely-layered structures with many artifacts,
such as ruptures or layer splitting and merging. Previous ridge-surface
extraction methods fail to extract the desired 2D manifold for such challenging
data. We have therefore developed a novel method to extract 2D manifolds. The
proposed method uses a local fast marching scheme in combination with a
separation of the region covered by fast marching into two sub-regions. The 2D
manifold of interest is then extracted as the surface separating the two
sub-regions. The local scheme can be applied for both automatic propagation as
well as interactive analysis. We demonstrate the applicability and robustness
of our method on both artificial data as well as real-world data including
folded silver and papyrus sheets.
Related papers
- BIFRÖST: 3D-Aware Image compositing with Language Instructions [27.484947109237964]
Bifr"ost is a novel 3D-aware framework that is built upon diffusion models to perform instruction-based image composition.
Bifr"ost addresses issues by training MLLM as a 2.5D location predictor and integrating depth maps as an extra condition during the generation process.
arXiv Detail & Related papers (2024-10-24T18:35:12Z) - MV2Cyl: Reconstructing 3D Extrusion Cylinders from Multi-View Images [13.255044855902408]
We present MV2Cyl, a novel method for reconstructing 3D from 2D multi-view images.
We achieve the optimal reconstruction result with the best accuracy in 2D sketch and extrude parameter estimation.
arXiv Detail & Related papers (2024-06-16T08:54:38Z) - NeuSD: Surface Completion with Multi-View Text-to-Image Diffusion [56.98287481620215]
We present a novel method for 3D surface reconstruction from multiple images where only a part of the object of interest is captured.
Our approach builds on two recent developments: surface reconstruction using neural radiance fields for the reconstruction of the visible parts of the surface, and guidance of pre-trained 2D diffusion models in the form of Score Distillation Sampling (SDS) to complete the shape in unobserved regions in a plausible manner.
arXiv Detail & Related papers (2023-12-07T19:30:55Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
We propose an online 3D semantic segmentation method that incrementally reconstructs a 3D semantic map from a stream of RGB-D frames.
Unlike offline methods, ours is directly applicable to scenarios with real-time constraints, such as robotics or mixed reality.
arXiv Detail & Related papers (2023-11-29T20:30:18Z) - Image-based Geolocalization by Ground-to-2.5D Map Matching [21.21416396311102]
Methods often utilize cross-view localization techniques to match ground-view query images with 2D maps.
We propose a new approach to learning representative embeddings from multi-modal data.
By encoding crucial geometric cues, our method learns discriminative location embeddings for matching panoramic images and maps.
arXiv Detail & Related papers (2023-08-11T08:00:30Z) - Polygon Detection for Room Layout Estimation using Heterogeneous Graphs
and Wireframes [2.76240219662896]
This paper presents a network method that can be used to solve room layout estimations tasks.
The network takes an RGB image and estimates a wireframe as well as space using an hourglass backbone.
arXiv Detail & Related papers (2023-06-21T11:55:15Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
Currently prevalent multimodal 3D detection methods are built upon LiDAR-based detectors that usually use dense Bird's-Eye-View feature maps.
Fully sparse architecture is gaining attention as they are highly efficient in long-range perception.
In this paper, we study how to effectively leverage image modality in the emerging fully sparse architecture.
arXiv Detail & Related papers (2023-04-24T17:57:43Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth
Sampling [75.957103837167]
Reconstructing a 3D shape based on a single sketch image is challenging due to the large domain gap between a sparse, irregular sketch and a regular, dense 3D shape.
Existing works try to employ the global feature extracted from sketch to directly predict the 3D coordinates, but they usually suffer from losing fine details that are not faithful to the input sketch.
arXiv Detail & Related papers (2022-08-14T16:37:51Z) - Feature matching for multi-epoch historical aerial images [0.0]
We present a fully automatic approach to detecting feature correspondences between historical images taken at different times.
Compared to the state-of-the-art, our method improves the image georeferencing accuracy by a factor of 2.
arXiv Detail & Related papers (2021-12-08T12:28:24Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.