Language is All a Graph Needs
- URL: http://arxiv.org/abs/2308.07134v5
- Date: Tue, 6 Feb 2024 03:08:44 GMT
- Title: Language is All a Graph Needs
- Authors: Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, Yongfeng Zhang
- Abstract summary: We propose InstructGLM (Instruction-finetuned Graph Language Model) with highly scalable prompts based on natural language instructions.
Our method surpasses all GNN baselines on ogbn-arxiv, Cora and PubMed datasets.
- Score: 33.9836278881785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large-scale pre-trained language models has revolutionized
various AI research domains. Transformers-based Large Language Models (LLMs)
have gradually replaced CNNs and RNNs to unify fields of computer vision and
natural language processing. Compared with independent data samples such as
images, videos or texts, graphs usually contain rich structural and relational
information. Meanwhile, language, especially natural language, being one of the
most expressive mediums, excels in describing complex structures. However,
existing work on incorporating graph problems into the generative language
modeling framework remains very limited. Considering the rising prominence of
LLMs, it becomes essential to explore whether LLMs can also replace GNNs as the
foundation model for graphs. In this paper, we propose InstructGLM
(Instruction-finetuned Graph Language Model) with highly scalable prompts based
on natural language instructions. We use natural language to describe
multi-scale geometric structure of the graph and then instruction finetune an
LLM to perform graph tasks, which enables Generative Graph Learning. Our method
surpasses all GNN baselines on ogbn-arxiv, Cora and PubMed datasets,
underscoring its effectiveness and sheds light on generative LLMs as new
foundation model for graph machine learning. Our code is open-sourced at
https://github.com/agiresearch/InstructGLM.
Related papers
- All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Dr.E Bridges Graphs with Large Language Models through Words [12.22063024099311]
We introduce an end-to-end modality-aligning framework for LLM-graph alignment: Dual-Residual Vector Quantized-Variational AutoEncoder.
Our approach is purposefully designed to facilitate token-level alignment with LLMs, enabling an effective translation of the intrinsic '' of graphs into comprehensible natural language.
arXiv Detail & Related papers (2024-06-19T16:43:56Z) - LangTopo: Aligning Language Descriptions of Graphs with Tokenized Topological Modeling [10.907949155931474]
We introduce LangTopo, which aligns graph structure modeling with natural language understanding at the token level.
We demonstrate the effectiveness of our proposed method on multiple datasets.
arXiv Detail & Related papers (2024-06-19T06:20:22Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
We propose CodeGRAG, a Graphical Retrieval Augmented Code Generation framework to enhance the performance of LLMs.
CodeGRAG builds the graphical view of code blocks based on the control flow and data flow of them to fill the gap between programming languages and natural language.
Various experiments and ablations are done on four datasets including both the C++ and python languages to validate the hard meta-graph prompt, the soft prompting technique, and the effectiveness of the objectives for pretrained GNN expert.
arXiv Detail & Related papers (2024-05-03T02:48:55Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
Large Language and Graph Assistant (LLaGA) is an innovative model to handle the complexities of graph-structured data.
LLaGA excels in versatility, generalizability and interpretability, allowing it to perform consistently well across different datasets and tasks.
Our experiments show that LLaGA delivers outstanding performance across four datasets and three tasks using one single model.
arXiv Detail & Related papers (2024-02-13T02:03:26Z) - Graph Language Models [18.75364157933661]
We introduce a novel LM type, the Graph Language Model (GLM), that integrates the strengths of both approaches and mitigates their weaknesses.
We design the GLM's architecture to incorporate graph biases, thereby promoting effective knowledge distribution within the graph.
Empirical evaluations on relation classification tasks show that GLM embeddings surpass both LM- and GNN-based baselines in supervised and zero-shot setting.
arXiv Detail & Related papers (2024-01-13T16:09:49Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
We provide a systematic review of scenarios and techniques related to large language models on graphs.
We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-attributed graphs, and text-paired graphs.
We discuss the real-world applications of such methods and summarize open-source codes and benchmark datasets.
arXiv Detail & Related papers (2023-12-05T14:14:27Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures.
We propose NLGraph, a benchmark of graph-based problem solving simulating in natural language.
arXiv Detail & Related papers (2023-05-17T08:29:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.