FOLT: Fast Multiple Object Tracking from UAV-captured Videos Based on
Optical Flow
- URL: http://arxiv.org/abs/2308.07207v2
- Date: Tue, 15 Aug 2023 02:59:04 GMT
- Title: FOLT: Fast Multiple Object Tracking from UAV-captured Videos Based on
Optical Flow
- Authors: Mufeng Yao, Jiaqi Wang, Jinlong Peng, Mingmin Chi, Chao Liu
- Abstract summary: Multiple object tracking (MOT) has been successfully investigated in computer vision.
However, MOT for the videos captured by unmanned aerial vehicles (UAV) is still challenging due to small object size, blurred object appearance, and very large and/or irregular motion.
We propose FOLT to mitigate these problems and reach fast and accurate MOT in UAV view.
- Score: 27.621524657473945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple object tracking (MOT) has been successfully investigated in computer
vision.
However, MOT for the videos captured by unmanned aerial vehicles (UAV) is
still challenging due to small object size, blurred object appearance, and very
large and/or irregular motion in both ground objects and UAV platforms.
In this paper, we propose FOLT to mitigate these problems and reach fast and
accurate MOT in UAV view.
Aiming at speed-accuracy trade-off, FOLT adopts a modern detector and
light-weight optical flow extractor to extract object detection features and
motion features at a minimum cost.
Given the extracted flow, the flow-guided feature augmentation is designed to
augment the object detection feature based on its optical flow, which improves
the detection of small objects.
Then the flow-guided motion prediction is also proposed to predict the
object's position in the next frame, which improves the tracking performance of
objects with very large displacements between adjacent frames.
Finally, the tracker matches the detected objects and predicted objects using
a spatially matching scheme to generate tracks for every object.
Experiments on Visdrone and UAVDT datasets show that our proposed model can
successfully track small objects with large and irregular motion and outperform
existing state-of-the-art methods in UAV-MOT tasks.
Related papers
- SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
This paper addresses the problem of multi-object tracking in Unmanned Aerial Vehicle (UAV) footage.
It plays a critical role in various UAV applications, including traffic monitoring systems and real-time suspect tracking by the police.
We propose a new tracking strategy, which initiates the tracking of target objects from low-confidence detections.
arXiv Detail & Related papers (2024-10-26T05:09:20Z) - STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision.
We propose a novel Spatio-Temporal Cohesion Multiple Object Tracking framework (STCMOT)
We use historical embedding features to model the representation of ReID and detection features in a sequential order.
Our framework sets a new state-of-the-art performance in MOTA and IDF1 metrics.
arXiv Detail & Related papers (2024-09-17T14:34:18Z) - Learning Motion Blur Robust Vision Transformers with Dynamic Early Exit for Real-Time UAV Tracking [14.382072224997074]
Single-stream architectures utilizing pre-trained ViT backbones offer improved performance, efficiency, and robustness.
We boost the efficiency of this framework by tailoring it into an adaptive framework that dynamically exits Transformer blocks for real-time UAV tracking.
We also improve the effectiveness of ViTs in handling motion blur, a common issue in UAV tracking caused by the fast movements of either the UAV, the tracked objects, or both.
arXiv Detail & Related papers (2024-07-07T14:10:04Z) - Ensuring UAV Safety: A Vision-only and Real-time Framework for Collision Avoidance Through Object Detection, Tracking, and Distance Estimation [16.671696289301625]
This paper presents a deep-learning framework that utilizes optical sensors for the detection, tracking, and distance estimation of non-cooperative aerial vehicles.
In this work, we propose a method for estimating the distance information of a detected aerial object in real time using only the input of a monocular camera.
arXiv Detail & Related papers (2024-05-10T18:06:41Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - Adaptive Multi-source Predictor for Zero-shot Video Object Segmentation [68.56443382421878]
We propose a novel adaptive multi-source predictor for zero-shot video object segmentation (ZVOS)
In the static object predictor, the RGB source is converted to depth and static saliency sources, simultaneously.
Experiments show that the proposed model outperforms the state-of-the-art methods on three challenging ZVOS benchmarks.
arXiv Detail & Related papers (2023-03-18T10:19:29Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - End-to-end Deep Object Tracking with Circular Loss Function for Rotated
Bounding Box [68.8204255655161]
We introduce a novel end-to-end deep learning method based on the Transformer Multi-Head Attention architecture.
We also present a new type of loss function, which takes into account the bounding box overlap and orientation.
arXiv Detail & Related papers (2020-12-17T17:29:29Z) - FMODetect: Robust Detection and Trajectory Estimation of Fast Moving
Objects [110.29738581961955]
We propose the first learning-based approach for detection and trajectory estimation of fast moving objects.
The proposed method first detects all fast moving objects as a truncated distance function to the trajectory.
For the sharp appearance estimation, we propose an energy minimization based deblurring.
arXiv Detail & Related papers (2020-12-15T11:05:34Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.