RestoreFormer++: Towards Real-World Blind Face Restoration from
Undegraded Key-Value Pairs
- URL: http://arxiv.org/abs/2308.07228v1
- Date: Mon, 14 Aug 2023 16:04:53 GMT
- Title: RestoreFormer++: Towards Real-World Blind Face Restoration from
Undegraded Key-Value Pairs
- Authors: Zhouxia Wang, Jiawei Zhang, Tianshui Chen, Wenping Wang, and Ping Luo
- Abstract summary: Blind face restoration aims at recovering high-quality face images from those with unknown degradations.
Current algorithms mainly introduce priors to complement high-quality details and achieve impressive progress.
We propose RestoreFormer++, which introduces fully-spatial attention mechanisms to model the contextual information and the interplay with the priors.
We show that RestoreFormer++ outperforms state-of-the-art algorithms on both synthetic and real-world datasets.
- Score: 63.991802204929485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind face restoration aims at recovering high-quality face images from those
with unknown degradations. Current algorithms mainly introduce priors to
complement high-quality details and achieve impressive progress. However, most
of these algorithms ignore abundant contextual information in the face and its
interplay with the priors, leading to sub-optimal performance. Moreover, they
pay less attention to the gap between the synthetic and real-world scenarios,
limiting the robustness and generalization to real-world applications. In this
work, we propose RestoreFormer++, which on the one hand introduces
fully-spatial attention mechanisms to model the contextual information and the
interplay with the priors, and on the other hand, explores an extending
degrading model to help generate more realistic degraded face images to
alleviate the synthetic-to-real-world gap. Compared with current algorithms,
RestoreFormer++ has several crucial benefits. First, instead of using a
multi-head self-attention mechanism like the traditional visual transformer, we
introduce multi-head cross-attention over multi-scale features to fully explore
spatial interactions between corrupted information and high-quality priors. In
this way, it can facilitate RestoreFormer++ to restore face images with higher
realness and fidelity. Second, in contrast to the recognition-oriented
dictionary, we learn a reconstruction-oriented dictionary as priors, which
contains more diverse high-quality facial details and better accords with the
restoration target. Third, we introduce an extending degrading model that
contains more realistic degraded scenarios for training data synthesizing, and
thus helps to enhance the robustness and generalization of our RestoreFormer++
model. Extensive experiments show that RestoreFormer++ outperforms
state-of-the-art algorithms on both synthetic and real-world datasets.
Related papers
- Overcoming False Illusions in Real-World Face Restoration with Multi-Modal Guided Diffusion Model [55.46927355649013]
We introduce a novel Multi-modal Guided Real-World Face Restoration technique.
MGFR can mitigate the generation of false facial attributes and identities.
We present the Reface-HQ dataset, comprising over 23,000 high-resolution facial images across 5,000 identities.
arXiv Detail & Related papers (2024-10-05T13:46:56Z) - DaLPSR: Leverage Degradation-Aligned Language Prompt for Real-World Image Super-Resolution [19.33582308829547]
This paper proposes to leverage degradation-aligned language prompt for accurate, fine-grained, and high-fidelity image restoration.
The proposed method achieves a new state-of-the-art perceptual quality level.
arXiv Detail & Related papers (2024-06-24T09:30:36Z) - CLR-Face: Conditional Latent Refinement for Blind Face Restoration Using
Score-Based Diffusion Models [57.9771859175664]
Recent generative-prior-based methods have shown promising blind face restoration performance.
Generating fine-grained facial details faithful to inputs remains a challenging problem.
We introduce a diffusion-based-prior inside a VQGAN architecture that focuses on learning the distribution over uncorrupted latent embeddings.
arXiv Detail & Related papers (2024-02-08T23:51:49Z) - Effective Adapter for Face Recognition in the Wild [72.75516495170199]
We tackle the challenge of face recognition in the wild, where images often suffer from low quality and real-world distortions.
Traditional approaches-either training models directly on degraded images or their enhanced counterparts using face restoration techniques-have proven ineffective.
We propose an effective adapter for augmenting existing face recognition models trained on high-quality facial datasets.
arXiv Detail & Related papers (2023-12-04T08:55:46Z) - Towards Robust Blind Face Restoration with Codebook Lookup Transformer [94.48731935629066]
Blind face restoration is a highly ill-posed problem that often requires auxiliary guidance.
We show that a learned discrete codebook prior in a small proxy space cast blind face restoration as a code prediction task.
We propose a Transformer-based prediction network, named CodeFormer, to model global composition and context of the low-quality faces.
arXiv Detail & Related papers (2022-06-22T17:58:01Z) - Autoencoder for Synthetic to Real Generalization: From Simple to More
Complex Scenes [13.618797548020462]
We focus on autoencoder architectures and aim at learning latent space representations that are invariant to inductive biases caused by the domain shift between simulated and real images.
We present approaches to increase generalizability and improve the preservation of the semantics to real datasets of increasing visual complexity.
arXiv Detail & Related papers (2022-04-01T12:23:41Z) - RestoreFormer: High-Quality Blind Face Restoration From Undegraded
Key-Value Pairs [48.33214614798882]
We propose RestoreFormer, which explores fully-spatial attentions to model contextual information.
It learns fully-spatial interactions between corrupted queries and high-quality key-value pairs.
It outperforms advanced state-of-the-art methods on one synthetic dataset and three real-world datasets.
arXiv Detail & Related papers (2022-01-17T12:21:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.