Distilling Knowledge from Resource Management Algorithms to Neural
Networks: A Unified Training Assistance Approach
- URL: http://arxiv.org/abs/2308.07511v1
- Date: Tue, 15 Aug 2023 00:30:58 GMT
- Title: Distilling Knowledge from Resource Management Algorithms to Neural
Networks: A Unified Training Assistance Approach
- Authors: Longfei Ma, Nan Cheng, Xiucheng Wang, Zhisheng Yin, Haibo Zhou, Wei
Quan
- Abstract summary: knowledge distillation (KD) based algorithm distillation (AD) method is proposed in this paper to improve the performance and convergence speed of the NN-based method.
This research paves the way for the integration of traditional optimization insights and emerging NN techniques in wireless communication system optimization.
- Score: 18.841969905928337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a fundamental problem, numerous methods are dedicated to the optimization
of signal-to-interference-plus-noise ratio (SINR), in a multi-user setting.
Although traditional model-based optimization methods achieve strong
performance, the high complexity raises the research of neural network (NN)
based approaches to trade-off the performance and complexity. To fully leverage
the high performance of traditional model-based methods and the low complexity
of the NN-based method, a knowledge distillation (KD) based algorithm
distillation (AD) method is proposed in this paper to improve the performance
and convergence speed of the NN-based method, where traditional SINR
optimization methods are employed as ``teachers" to assist the training of NNs,
which are ``students", thus enhancing the performance of unsupervised and
reinforcement learning techniques. This approach aims to alleviate common
issues encountered in each of these training paradigms, including the
infeasibility of obtaining optimal solutions as labels and overfitting in
supervised learning, ensuring higher convergence performance in unsupervised
learning, and improving training efficiency in reinforcement learning.
Simulation results demonstrate the enhanced performance of the proposed
AD-based methods compared to traditional learning methods. Remarkably, this
research paves the way for the integration of traditional optimization insights
and emerging NN techniques in wireless communication system optimization.
Related papers
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - Novel Saliency Analysis for the Forward Forward Algorithm [0.0]
We introduce the Forward Forward algorithm into neural network training.
This method involves executing two forward passes the first with actual data to promote positive reinforcement, and the second with synthetically generated negative data to enable discriminative learning.
To overcome the limitations inherent in traditional saliency techniques, we developed a bespoke saliency algorithm specifically tailored for the Forward Forward framework.
arXiv Detail & Related papers (2024-09-18T17:21:59Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
We introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics.
First, we propose direction-aware facilitating attention model (DaAM) to incorporate directionality into the embedding process.
Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy.
arXiv Detail & Related papers (2024-03-11T02:17:42Z) - Multiplicative update rules for accelerating deep learning training and
increasing robustness [69.90473612073767]
We propose an optimization framework that fits to a wide range of machine learning algorithms and enables one to apply alternative update rules.
We claim that the proposed framework accelerates training, while leading to more robust models in contrast to traditionally used additive update rule.
arXiv Detail & Related papers (2023-07-14T06:44:43Z) - Deep Active Learning with Structured Neural Depth Search [18.180995603975422]
Active-iNAS trains several models and selects the model with the best generalization performance for querying the subsequent samples after each active learning cycle.
We propose a novel active strategy with the method called structured variational inference (SVI) or structured neural depth search (SNDS)
At the same time, we theoretically demonstrate that the current VI-based methods based on the mean-field assumption could lead to poor performance.
arXiv Detail & Related papers (2023-06-05T12:00:12Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction
Polynomial: the Ratio Net [3.155317790896023]
This study takes a different approach by introducing neural network architecture for constructing trial functions, known as ratio net.
Through empirical trials, it demonstrated that the proposed method exhibits higher efficiency compared to existing approaches.
The ratio net holds promise for advancing the efficiency and effectiveness of solving differential equations.
arXiv Detail & Related papers (2021-05-18T16:59:52Z) - Behavior-based Neuroevolutionary Training in Reinforcement Learning [3.686320043830301]
This work presents a hybrid algorithm that combines neuroevolutionary optimization with value-based reinforcement learning.
For this purpose, we consolidate different methods to generate and optimize agent policies, creating a diverse population.
Our results indicate that combining methods can enhance the sample efficiency and learning speed for evolutionary approaches.
arXiv Detail & Related papers (2021-05-17T15:40:42Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.