Domain-Aware Fine-Tuning: Enhancing Neural Network Adaptability
- URL: http://arxiv.org/abs/2308.07728v5
- Date: Tue, 26 Mar 2024 07:43:08 GMT
- Title: Domain-Aware Fine-Tuning: Enhancing Neural Network Adaptability
- Authors: Seokhyeon Ha, Sunbeom Jung, Jungwoo Lee,
- Abstract summary: Domain-Aware Fine-Tuning (DAFT) is a novel approach that incorporates batch normalization conversion and the integration of linear probing and fine-tuning.
Our method significantly mitigates feature distortion and achieves improved model performance on both in-distribution and out-of-distribution datasets.
- Score: 4.671615537573023
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fine-tuning pre-trained neural network models has become a widely adopted approach across various domains. However, it can lead to the distortion of pre-trained feature extractors that already possess strong generalization capabilities. Mitigating feature distortion during adaptation to new target domains is crucial. Recent studies have shown promising results in handling feature distortion by aligning the head layer on in-distribution datasets before performing fine-tuning. Nonetheless, a significant limitation arises from the treatment of batch normalization layers during fine-tuning, leading to suboptimal performance. In this paper, we propose Domain-Aware Fine-Tuning (DAFT), a novel approach that incorporates batch normalization conversion and the integration of linear probing and fine-tuning. Our batch normalization conversion method effectively mitigates feature distortion by reducing modifications to the neural network during fine-tuning. Additionally, we introduce the integration of linear probing and fine-tuning to optimize the head layer with gradual adaptation of the feature extractor. By leveraging batch normalization layers and integrating linear probing and fine-tuning, our DAFT significantly mitigates feature distortion and achieves improved model performance on both in-distribution and out-of-distribution datasets. Extensive experiments demonstrate that our method outperforms other baseline methods, demonstrating its effectiveness in not only improving performance but also mitigating feature distortion.
Related papers
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
Regularizing Deep Neural Networks (DNNs) is essential for improving generalizability and preventing overfitting.
We propose a novel approach to DNN regularization by framing the training process as a constrained optimization problem.
We employ the Augmented Lagrangian (SAL) method to achieve a more flexible and efficient regularization mechanism.
arXiv Detail & Related papers (2023-10-25T13:55:35Z) - Implicit regularization in AI meets generalized hardness of
approximation in optimization -- Sharp results for diagonal linear networks [0.0]
We show sharp results for the implicit regularization imposed by the gradient flow of Diagonal Linear Networks.
We link this to the phenomenon of phase transitions in generalized hardness of approximation.
Non-sharpness of our results would imply that the GHA phenomenon would not occur for the basis pursuit optimization problem.
arXiv Detail & Related papers (2023-07-13T13:27:51Z) - On Fine-Tuned Deep Features for Unsupervised Domain Adaptation [23.18781318003242]
We study the potential of combining fine-tuned features and feature transformation based UDA methods for improved domain adaptation performance.
Specifically, we integrate the prevalent progressive pseudo-labelling techniques into the fine-tuning framework to extract fine-tuned features.
Experiments with multiple deep models including ResNet-50/101 and DeiT-small/base are conducted to demonstrate the combination of fine-tuned features.
arXiv Detail & Related papers (2022-10-25T15:07:04Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - Rethinking Skip Connection with Layer Normalization in Transformers and
ResNets [49.87919454950763]
Skip connection is a widely-used technique to improve the performance of deep neural networks.
In this work, we investigate how the scale factors in the effectiveness of the skip connection.
arXiv Detail & Related papers (2021-05-15T11:44:49Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
We present the first method for linearizing a pre-trained model that achieves comparable performance to non-linear fine-tuning.
LQF consists of simple modifications to the architecture, loss function and optimization typically used for classification.
arXiv Detail & Related papers (2020-12-21T06:40:20Z) - BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods
to Deep Binary Model [34.093978443640616]
Recent methods have significantly reduced the performance of Binary Neural Networks (BNNs)
guaranteeing the effective and efficient training of BNNs is an unsolved problem.
We propose a BAMSProd algorithm with a key observation that the convergence property of optimizing deep binary model is strongly related to the quantization errors.
arXiv Detail & Related papers (2020-09-29T06:12:32Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.