Sarcasm Detection in a Disaster Context
- URL: http://arxiv.org/abs/2308.08156v1
- Date: Wed, 16 Aug 2023 05:58:12 GMT
- Title: Sarcasm Detection in a Disaster Context
- Authors: Tiberiu Sosea, Junyi Jessy Li, Cornelia Caragea
- Abstract summary: We introduce HurricaneSARC, a dataset of 15,000 tweets annotated for intended sarcasm.
Our best model is able to obtain as much as 0.70 F1 on our dataset.
- Score: 103.93691731605163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During natural disasters, people often use social media platforms such as
Twitter to ask for help, to provide information about the disaster situation,
or to express contempt about the unfolding event or public policies and
guidelines. This contempt is in some cases expressed as sarcasm or irony.
Understanding this form of speech in a disaster-centric context is essential to
improving natural language understanding of disaster-related tweets. In this
paper, we introduce HurricaneSARC, a dataset of 15,000 tweets annotated for
intended sarcasm, and provide a comprehensive investigation of sarcasm
detection using pre-trained language models. Our best model is able to obtain
as much as 0.70 F1 on our dataset. We also demonstrate that the performance on
HurricaneSARC can be improved by leveraging intermediate task transfer
learning. We release our data and code at
https://github.com/tsosea2/HurricaneSarc.
Related papers
- Public Health in Disaster: Emotional Health and Life Incidents Extraction during Hurricane Harvey [1.433758865948252]
We collected a dataset of approximately 400,000 public tweets related to the storm.
Using a BERT-based model, we predicted the emotions associated with each tweet.
We further refined our analysis by integrating Graph Neural Networks (GNN) and Large Language Models (LLM)
arXiv Detail & Related papers (2024-08-20T18:31:20Z) - CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
This study introduces a novel approach to disaster text classification by enhancing a pre-trained Large Language Model (LLM)
Our methodology involves creating a comprehensive instruction dataset from disaster-related tweets, which is then used to fine-tune an open-source LLM.
This fine-tuned model can classify multiple aspects of disaster-related information simultaneously, such as the type of event, informativeness, and involvement of human aid.
arXiv Detail & Related papers (2024-06-16T23:01:10Z) - CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
We present a fine-grained disaster tweet classification model under the semi-supervised, few-shot learning setting.
Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled data and large amounts of unlabeled data.
arXiv Detail & Related papers (2023-10-23T07:01:09Z) - Sarcasm Detection Framework Using Emotion and Sentiment Features [62.997667081978825]
We propose a model which incorporates emotion and sentiment features to capture the incongruity intrinsic to sarcasm.
Our approach achieved state-of-the-art results on four datasets from social networking platforms and online media.
arXiv Detail & Related papers (2022-11-23T15:14:44Z) - TweetDIS: A Large Twitter Dataset for Natural Disasters Built using Weak
Supervision [1.2400116527089997]
Social media is often utilized as a lifeline for communication during natural disasters.
In this work, we curate a silver standard dataset using weak supervision.
In order to validate its utility, we train machine learning models on the weakly supervised data to identify three different types of natural disasters.
arXiv Detail & Related papers (2022-07-11T15:30:09Z) - Detecting Perceived Emotions in Hurricane Disasters [62.760131661847986]
We introduce HurricaneEmo, an emotion dataset of 15,000 English tweets spanning three hurricanes: Harvey, Irma, and Maria.
We present a comprehensive study of fine-grained emotions and propose classification tasks to discriminate between coarse-grained emotion groups.
arXiv Detail & Related papers (2020-04-29T16:17:49Z) - Semantic-based End-to-End Learning for Typhoon Intensity Prediction [0.2580765958706853]
Existing technologies employ different machine learning approaches to predict incoming disasters from historical environmental data.
Social media posts (e.g., tweets) is very informal and contains only limited content.
We propose an end-to-end based framework that learns from disaster-related tweets and environmental data to improve typhoon intensity prediction.
arXiv Detail & Related papers (2020-03-22T01:13:20Z) - On Identifying Hashtags in Disaster Twitter Data [55.17975121160699]
We construct a unique dataset of disaster-related tweets annotated with hashtags useful for filtering actionable information.
Using this dataset, we investigate Long Short Term Memory-based models within a Multi-Task Learning framework.
The best performing model achieves an F1-score as high as 92.22%.
arXiv Detail & Related papers (2020-01-05T22:37:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.