Warped geometric information on the optimisation of Euclidean functions
- URL: http://arxiv.org/abs/2308.08305v2
- Date: Mon, 18 Mar 2024 18:16:00 GMT
- Title: Warped geometric information on the optimisation of Euclidean functions
- Authors: Marcelo Hartmann, Bernardo Williams, Hanlin Yu, Mark Girolami, Alessandro Barp, Arto Klami,
- Abstract summary: We consider optimisation of a real-valued function defined in a potentially high-dimensional Euclidean space.
We find the function's optimum along a manifold with a warped metric.
Our proposed algorithm, using 3rd-order approximation of geodesics, tends to outperform standard Euclidean gradient-based counterparts.
- Score: 43.43598316339732
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider the fundamental task of optimising a real-valued function defined in a potentially high-dimensional Euclidean space, such as the loss function in many machine-learning tasks or the logarithm of the probability distribution in statistical inference. We use Riemannian geometry notions to redefine the optimisation problem of a function on the Euclidean space to a Riemannian manifold with a warped metric, and then find the function's optimum along this manifold. The warped metric chosen for the search domain induces a computational friendly metric-tensor for which optimal search directions associated with geodesic curves on the manifold becomes easier to compute. Performing optimization along geodesics is known to be generally infeasible, yet we show that in this specific manifold we can analytically derive Taylor approximations up to third-order. In general these approximations to the geodesic curve will not lie on the manifold, however we construct suitable retraction maps to pull them back onto the manifold. Therefore, we can efficiently optimize along the approximate geodesic curves. We cover the related theory, describe a practical optimization algorithm and empirically evaluate it on a collection of challenging optimisation benchmarks. Our proposed algorithm, using 3rd-order approximation of geodesics, tends to outperform standard Euclidean gradient-based counterparts in term of number of iterations until convergence.
Related papers
- Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Short and Straight: Geodesics on Differentiable Manifolds [6.85316573653194]
In this work, we first analyse existing methods for computing length-minimising geodesics.
Second, we propose a model-based parameterisation for distance fields and geodesic flows on continuous manifold.
Third, we develop a curvature-based training mechanism, sampling and scaling points in regions of the manifold exhibiting larger values of the Ricci scalar.
arXiv Detail & Related papers (2023-05-24T15:09:41Z) - Extrinsic Bayesian Optimizations on Manifolds [1.3477333339913569]
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on Euclid manifold.
Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensionalean space.
This leads to efficient and scalable algorithms for optimization over complex manifold.
arXiv Detail & Related papers (2022-12-21T06:10:12Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
We show how a difference of Euclidean convexization functions can be written as a difference of different types of problems in statistics and machine learning.
Ultimately, we helps the broader broader the broader the broader the broader the work.
arXiv Detail & Related papers (2022-06-22T23:57:40Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-max algorithms have been analyzed in the Euclidean setting.
We prove that the extraiteient (RCEG) method corrected lastrate convergence at a linear rate.
arXiv Detail & Related papers (2022-06-04T18:53:44Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.
We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Curvature-Dependant Global Convergence Rates for Optimization on
Manifolds of Bounded Geometry [6.85316573653194]
We give curvature-dependant convergence rates for weakly convex functions defined on a manifold of 1-bounded geometry.
We compute these bounds explicitly for some manifold commonly used in the optimization literature.
We present self-contained proofs of fully general bounds on the norm of the differential of the exponential map.
arXiv Detail & Related papers (2020-08-06T08:30:35Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
We propose an oracle version of the Gaussian smoothing function to overcome the difficulty of non-linearity of manifold non-linearity.
We demonstrate the applicability of our algorithms by results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
arXiv Detail & Related papers (2020-03-25T06:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.