Hierarchical Uncertainty Estimation for Medical Image Segmentation
Networks
- URL: http://arxiv.org/abs/2308.08465v1
- Date: Wed, 16 Aug 2023 16:09:23 GMT
- Title: Hierarchical Uncertainty Estimation for Medical Image Segmentation
Networks
- Authors: Xinyu Bai, Wenjia Bai
- Abstract summary: Uncertainty exists in both images (noise) and manual annotations (human errors and bias) used for model training.
We propose a simple yet effective method for estimating uncertainties at multiple levels.
We demonstrate that a deep learning segmentation network such as U-net, can achieve a high segmentation performance.
- Score: 1.9564356751775307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning a medical image segmentation model is an inherently ambiguous task,
as uncertainties exist in both images (noise) and manual annotations (human
errors and bias) used for model training. To build a trustworthy image
segmentation model, it is important to not just evaluate its performance but
also estimate the uncertainty of the model prediction. Most state-of-the-art
image segmentation networks adopt a hierarchical encoder architecture,
extracting image features at multiple resolution levels from fine to coarse. In
this work, we leverage this hierarchical image representation and propose a
simple yet effective method for estimating uncertainties at multiple levels.
The multi-level uncertainties are modelled via the skip-connection module and
then sampled to generate an uncertainty map for the predicted image
segmentation. We demonstrate that a deep learning segmentation network such as
U-net, when implemented with such hierarchical uncertainty estimation module,
can achieve a high segmentation performance, while at the same time provide
meaningful uncertainty maps that can be used for out-of-distribution detection.
Related papers
- Anatomically-aware Uncertainty for Semi-supervised Image Segmentation [12.175556059523863]
Semi-supervised learning relaxes the need of large pixel-wise labeled datasets for image segmentation by leveraging unlabeled data.
Uncertainty estimation methods rely on multiple inferences from the model predictions that must be computed for each training step.
This work proposes a novel method to estimate segmentation uncertainty by leveraging global information from the segmentation masks.
arXiv Detail & Related papers (2023-10-24T18:03:07Z) - Introspective Deep Metric Learning [91.47907685364036]
We propose an introspective deep metric learning framework for uncertainty-aware comparisons of images.
The proposed IDML framework improves the performance of deep metric learning through uncertainty modeling.
arXiv Detail & Related papers (2023-09-11T16:21:13Z) - DOMINO: Domain-aware Model Calibration in Medical Image Segmentation [51.346121016559024]
Modern deep neural networks are poorly calibrated, compromising trustworthiness and reliability.
We propose DOMINO, a domain-aware model calibration method that leverages the semantic confusability and hierarchical similarity between class labels.
Our results show that DOMINO-calibrated deep neural networks outperform non-calibrated models and state-of-the-art morphometric methods in head image segmentation.
arXiv Detail & Related papers (2022-09-13T15:31:52Z) - Unsupervised Deep Learning Meets Chan-Vese Model [77.24463525356566]
We propose an unsupervised image segmentation approach that integrates the Chan-Vese (CV) model with deep neural networks.
Our basic idea is to apply a deep neural network that maps the image into a latent space to alleviate the violation of the piecewise constant assumption in image space.
arXiv Detail & Related papers (2022-04-14T13:23:57Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Uncertainty Quantification in Medical Image Segmentation with
Multi-decoder U-Net [3.961279440272763]
We exploit the medical image segmentation uncertainty by measuring segmentation performance with multiple annotations in a supervised learning manner.
We propose a U-Net based architecture with multiple decoders, where the image representation is encoded with the same encoder, and segmentation referring to each annotation is estimated with multiple decoders.
The proposed architecture is trained in an end-to-end manner and able to improve predictive uncertainty estimates.
arXiv Detail & Related papers (2021-09-15T01:46:29Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Utilizing Uncertainty Estimation in Deep Learning Segmentation of
Fluorescence Microscopy Images with Missing Markers [7.812710681134931]
Fluorescence microscopy images contain several channels, each indicating a marker staining the sample.
It has been challenging to apply deep learning based segmentation models, which expect a predefined channel combination for all training samples as well as at inference for future application.
We propose a method to estimate segmentation quality on unlabeled images by (i) estimating both aleatoric and epistemic uncertainties of convolutional neural networks for image segmentation, and (ii) training a Random Forest model for the interpretation of uncertainty features via regression to their corresponding segmentation metrics.
arXiv Detail & Related papers (2021-01-27T15:06:04Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
We aim to estimate a dense flow field relating two images, coupled with a robust pixel-wise confidence map.
We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty.
Our approach obtains state-of-the-art results on challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-01-05T18:54:11Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.