Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays
- URL: http://arxiv.org/abs/2308.08648v1
- Date: Wed, 16 Aug 2023 19:47:17 GMT
- Title: Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays
- Authors: Qian Xu, J. Pablo Bonilla Ataides, Christopher A. Pattison, Nithin
Raveendran, Dolev Bluvstein, Jonathan Wurtz, Bane Vasic, Mikhail D. Lukin,
Liang Jiang, and Hengyun Zhou
- Abstract summary: We propose a hardware-efficient scheme to perform fault-tolerant quantum computation with high-rate qLDPC codes on reconfigurable atom arrays.
Our work paves the way for explorations of low-overhead quantum computing with qLDPC codes at a practical scale.
- Score: 5.542275446319411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum low-density parity-check (qLDPC) codes can achieve high encoding
rates and good code distance scaling, providing a promising route to
low-overhead fault-tolerant quantum computing. However, the long-range
connectivity required to implement such codes makes their physical realization
challenging. Here, we propose a hardware-efficient scheme to perform
fault-tolerant quantum computation with high-rate qLDPC codes on reconfigurable
atom arrays, directly compatible with recently demonstrated experimental
capabilities. Our approach utilizes the product structure inherent in many
qLDPC codes to implement the non-local syndrome extraction circuit via atom
rearrangement, resulting in effectively constant overhead in practically
relevant regimes. We prove the fault tolerance of these protocols, perform
circuit-level simulations of memory and logical operations with these codes,
and find that our qLDPC-based architecture starts to outperform the surface
code with as few as several hundred physical qubits at a realistic physical
error rate of $10^{-3}$. We further find that less than 3000 physical qubits
are sufficient to obtain over an order of magnitude qubit savings compared to
the surface code, and quantum algorithms involving thousands of logical qubits
can be performed using less than $10^5$ physical qubits. Our work paves the way
for explorations of low-overhead quantum computing with qLDPC codes at a
practical scale, based on current experimental technologies.
Related papers
- Computing Efficiently in QLDPC Codes [30.651249760099272]
We introduce a new family of QLDPC codes that enable efficient compilation of the Clifford group via operations.
We run circuit-level simulations of depth-126 logical circuits to show that logical operations in our QLDPC codes attains near-memory performance.
arXiv Detail & Related papers (2025-02-11T00:27:55Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.
Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - High-rate quantum LDPC codes for long-range-connected neutral atom registers [0.0]
High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are desirable for fault-tolerant quantum computing.
We analyze a family of Low-Density Parity-Check (LDPC) codes with limited long-range interactions and outline a near-term implementation in neutral atom registers.
arXiv Detail & Related papers (2024-04-19T17:14:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Entanglement Purification with Quantum LDPC Codes and Iterative Decoding [5.5165579223151795]
We use QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing.
Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of $3$-qubit GHZ states to construct a scalable GHZ purification protocol.
arXiv Detail & Related papers (2022-10-25T16:42:32Z) - Low-overhead fault-tolerant quantum computing using long-range
connectivity [2.867517731896504]
Scheme for low-overhead fault-tolerant quantum computation based on quantum low-density parity-check codes.
We estimate order-of-magnitude improvements in the overheads for processing around one hundred logical qubits.
arXiv Detail & Related papers (2021-10-20T21:49:48Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Quantum error mitigation as a universal error-minimization technique:
applications from NISQ to FTQC eras [0.9622115055919379]
In the early years of fault-tolerant quantum computing (FTQC), the available code distance and the number of magic states will be restricted.
Here, we integrate quantum error correction and quantum error mitigation into an efficient FTQC architecture.
This scheme will dramatically alleviate the required computational overheads and hasten the arrival of the FTQC era.
arXiv Detail & Related papers (2020-10-08T10:27:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.