Enhancing API Documentation through BERTopic Modeling and Summarization
- URL: http://arxiv.org/abs/2308.09070v1
- Date: Thu, 17 Aug 2023 15:57:12 GMT
- Title: Enhancing API Documentation through BERTopic Modeling and Summarization
- Authors: AmirHossein Naghshzan, Sylvie Ratte
- Abstract summary: This paper focuses on the complexities of interpreting Application Programming Interface (API) documentation.
Official API documentation serves as a primary source of information for developers, but it can often be extensive and lacks user-friendliness.
Our novel approach employs the strengths of BERTopic for topic modeling and Natural Language Processing (NLP) to automatically generate summaries of API documentation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the amount of textual data in various fields, including software
development, continues to grow, there is a pressing demand for efficient and
effective extraction and presentation of meaningful insights. This paper
presents a unique approach to address this need, focusing on the complexities
of interpreting Application Programming Interface (API) documentation. While
official API documentation serves as a primary source of information for
developers, it can often be extensive and lacks user-friendliness. In light of
this, developers frequently resort to unofficial sources like Stack Overflow
and GitHub. Our novel approach employs the strengths of BERTopic for topic
modeling and Natural Language Processing (NLP) to automatically generate
summaries of API documentation, thereby creating a more efficient method for
developers to extract the information they need. The produced summaries and
topics are evaluated based on their performance, coherence, and
interoperability.
The findings of this research contribute to the field of API documentation
analysis by providing insights into recurring topics, identifying common
issues, and generating potential solutions. By improving the accessibility and
efficiency of API documentation comprehension, our work aims to enhance the
software development process and empower developers with practical tools for
navigating complex APIs.
Related papers
- Demystifying Application Programming Interfaces (APIs): Unlocking the Power of Large Language Models and Other Web-based AI Services in Social Work Research [0.0]
Application Programming Interfaces (APIs) are essential tools for social work researchers aiming to harness advanced technologies like Large Language Models (LLMs) and other AI services.
This paper demystifies APIs and illustrates how they can enhance research methodologies.
Practical code examples demonstrate how LLMs can generate API code for accessing specialized services, such as extracting data from unstructured text.
arXiv Detail & Related papers (2024-10-26T16:07:12Z) - FANTAstic SEquences and Where to Find Them: Faithful and Efficient API Call Generation through State-tracked Constrained Decoding and Reranking [57.53742155914176]
API call generation is the cornerstone of large language models' tool-using ability.
Existing supervised and in-context learning approaches suffer from high training costs, poor data efficiency, and generated API calls that can be unfaithful to the API documentation and the user's request.
We propose an output-side optimization approach called FANTASE to address these limitations.
arXiv Detail & Related papers (2024-07-18T23:44:02Z) - Lightweight Syntactic API Usage Analysis with UCov [0.0]
We present a novel conceptual framework designed to assist library maintainers in understanding the interactions allowed by their APIs.
These customizable models enable library maintainers to improve their design ahead of release, reducing friction during evolution.
We implement these models for Java libraries in a new tool UCov and demonstrate its capabilities on three libraries exhibiting diverse styles of interaction.
arXiv Detail & Related papers (2024-02-19T10:33:41Z) - Revolutionizing API Documentation through Summarization [0.0]
API documentation can be lengthy and challenging to navigate, prompting developers to seek unofficial sources such as Stack Overflow.
We employ BERTopic and extractive summarization to automatically generate concise and informative API summaries.
These summaries encompass key insights like general usage, common developer issues, and potential solutions, sourced from the wealth of knowledge on Stack Overflow.
arXiv Detail & Related papers (2024-01-21T01:18:08Z) - SoTaNa: The Open-Source Software Development Assistant [81.86136560157266]
SoTaNa is an open-source software development assistant.
It generates high-quality instruction-based data for the domain of software engineering.
It employs a parameter-efficient fine-tuning approach to enhance the open-source foundation model, LLaMA.
arXiv Detail & Related papers (2023-08-25T14:56:21Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Evaluating Embedding APIs for Information Retrieval [51.24236853841468]
We evaluate the capabilities of existing semantic embedding APIs on domain generalization and multilingual retrieval.
We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective in English.
For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best, albeit at a higher cost.
arXiv Detail & Related papers (2023-05-10T16:40:52Z) - Towards Code Summarization of APIs Based on Unofficial Documentation
Using NLP Techniques [0.0]
In some cases, official documentation is not an efficient way to get the needed information.
We propose an automatic approach to generate summaries for APIs and methods by leveraging unofficial documentation using NLP techniques.
arXiv Detail & Related papers (2022-08-12T15:07:30Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
We present Nemo, an end-to-end interactive Supervision system that improves overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS supervision approach.
arXiv Detail & Related papers (2022-03-02T19:57:32Z) - Leveraging Unsupervised Learning to Summarize APIs Discussed in Stack
Overflow [1.8047694351309207]
This paper proposes an automatic and novel approach for summarizing Android API methods discussed in Stack Overflow.
Our approach takes the API method's name as an input and generates a natural language summary based on Stack Overflow discussions of that API method.
We have conducted a survey that involves 16 Android developers to evaluate the quality of our automatically generated summaries and compare them with the official Android documentation.
arXiv Detail & Related papers (2021-11-27T18:49:51Z) - A Data-Centric Framework for Composable NLP Workflows [109.51144493023533]
Empirical natural language processing systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components.
We establish a unified open-source framework to support fast development of such sophisticated NLP in a composable manner.
arXiv Detail & Related papers (2021-03-02T16:19:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.