A Principle for Global Optimization with Gradients
- URL: http://arxiv.org/abs/2308.09556v1
- Date: Fri, 18 Aug 2023 13:39:29 GMT
- Title: A Principle for Global Optimization with Gradients
- Authors: Nils M\"uller
- Abstract summary: This work demonstrates the utility of gradients for the global optimization of certain differentiable functions with many suboptimal local minima.
Experiments measure the quality of non-local search directions as well as the performance of a proposed simplistic algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work demonstrates the utility of gradients for the global optimization
of certain differentiable functions with many suboptimal local minima. To this
end, a principle for generating search directions from non-local quadratic
approximants based on gradients of the objective function is analyzed.
Experiments measure the quality of non-local search directions as well as the
performance of a proposed simplistic algorithm, of the covariance matrix
adaptation evolution strategy (CMA-ES), and of a randomly reinitialized
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.
Related papers
- Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - Adaptive Proximal Gradient Method for Convex Optimization [18.681222155879656]
We explore two fundamental first-order algorithms in convex optimization, namely gradient descent (GD) and proximal gradient method (ProxGD)
Our focus is on making these algorithms entirely adaptive by leveraging local curvature information of smooth functions.
We propose adaptive versions of GD and ProxGD that are based on observed gradient differences and, thus, have no added computational costs.
arXiv Detail & Related papers (2023-08-04T11:37:08Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Adapting Step-size: A Unified Perspective to Analyze and Improve
Gradient-based Methods for Adversarial Attacks [21.16546620434816]
We provide a unified theoretical interpretation of gradient-based adversarial learning methods.
We show that each of these algorithms is in fact a specific reformulation of their original gradient methods.
We present a broad class of adaptive gradient-based algorithms based on the regular gradient methods.
arXiv Detail & Related papers (2023-01-27T06:17:51Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
We analyze algorithms for zeroth-order entropy composite objectives, focusing on dependence on dimensionality.
This is achieved by exploiting low dimensional structure of the decision set using the mirror descent method with an estimation alike function.
To improve the gradient, we replace the classic sampling method based on Rademacher and show that the mini-batch method copes with non-Eucli geometry.
arXiv Detail & Related papers (2022-08-09T07:36:25Z) - A Gradient Sampling Algorithm for Stratified Maps with Applications to
Topological Data Analysis [0.0]
We introduce a novel gradient descent algorithm extending the well-known Gradient Sampling methodology.
We then apply our method to objective functions based on the persistent homology map computed over lower-star filters.
arXiv Detail & Related papers (2021-09-01T14:07:44Z) - Bregman Gradient Policy Optimization [97.73041344738117]
We design a Bregman gradient policy optimization for reinforcement learning based on Bregman divergences and momentum techniques.
VR-BGPO reaches the best complexity $tilde(epsilon-3)$ for finding an $epsilon$stationary point only requiring one trajectory at each iteration.
arXiv Detail & Related papers (2021-06-23T01:08:54Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - An adaptive stochastic gradient-free approach for high-dimensional
blackbox optimization [0.0]
We propose an adaptive gradient-free (ASGF) approach for high-dimensional non-smoothing problems.
We illustrate the performance of this method on benchmark global problems and learning tasks.
arXiv Detail & Related papers (2020-06-18T22:47:58Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.